Foreword by Ben Fathi '

Corporate Vice President, Windows Core Development, Microsoft Corporation

Wi n d OWS £DITION
Internals

Covering Windows Server 2008
and Windows Vistar

Mark E. Russinovich

and David A. Solomon
with Alex lonescu

Table of Contents

Table of CONtENTS.......ccvviiiiec s [
1. Concepts and TOOIScccveiiiieiieecie e 1
1.1 Windows Operating SYStem VEISIONScccooeieririninienieieieseesee e 1
1.2 Foundation Concepts and TEIMS........cceiiiiieiineneneseeeeee e 2
L2 L2 WINAOWS AP ..o 2
1.2.2 Services, Functions, and ROULINEScccceeiviiiiii i 4
1.2.3 Processes, Threads, and JODS.........cccveiiiiiiiiiiiiiiec e 4
1.2 4 Virtual MEIMOTYcoiiiiiiiiiiieeee e 14
1.2.5 Kernel Mode vs. USer MOGE...........cccooiiiiiiiiinieceee e 17
1.2.6 Terminal Services and Multiple SesSIONS.........ccccceveviieienininennnn 20
1.2.7 Objects and HandIes............cccoviiiiiiiiieee e 21
1.2.8 SECUTILY ..ottt 22
1.2.9 REGISTIY ..ot 23
1.2.20 UNHCOE. ...ttt 24

1.3 Digging into WINdows INtErNalS...........cccceieiiiininiiinieeeese s 24
1.3.1 Reliability and Performance MoONItor..........ccccooeviienenencnenenen 25
1.3.2 Kernel DebUggingcccooiiirieiiieieie et 27
1.3.3 Windows Software Development Kitcccccooeiiiiiinineniienee, 32
1.3.4 WINdoWS DriVer Kit.........ccooiiiiiiiieic e 32
1.3.5 SySiNternals TOOIS.ccooiiiiiiiiicee e 32

1.4 CONCIUSION ...ttt 33
2. System ArChItECIUNEooovie e 34
2.1 Requirements and Design GOoalS..........cceoeieiiiiiiniiisicceee e 34
2.2 Operating System MOlooooiiiiiii e 35
2.3 ArCNITECTUIE OVEIVIEW ..ottt 36
2.3 1 POrtabilitycooiiiiieee 38
2.3.2 SYymmEtriC MUITIPIOCESSINGccvevveiiiesiciiesiesiesieee e 39
2.3.3 SCAlADIIITY ... 44
2.3.4 Differences Between Client and Server Versionsccccocvevvennns 44
2.3.5 Checked BUIldcccoiiiiiiiicce e 48

2.4 Key System COMPONENTS........cccviiieiiiieiieeie et 50
2.4.1 Environment Subsystems and Subsystem DLLS............c.ccocecvnnenns 51
242 NEAILAI .o s 57
2.4.3 EXECUTIVE ...ttt bbbttt 58
244 KEINEL...c.oiiiii e 61
2.4.5 Hardware ADStraction LayYer.........cccoeiiiiiinininieeenese e 64
2.4.6 DEVICE DFIVEI'S ...ttt 67
2.4.7 SYSTEIM PrOCESSESc.vveuviiieeiiieie sttt ettt 72

2.5 CONCIUSION <., 83

3. System MechaniSmScccovviiiiiiieii e 84
3.1 Trap DisPatChiNg.......cooui i 84
3.1.1 Interrupt DiSPatChiNgcccooiiiiiiiieiie e 86
3.1.2 Exception DispatChingccocoveeiiiiinie e 113
3.1.3 System Service DISPatChiNgcccovieiieiiieniiiie e 123

3.2 ODJECE MANAGET ...ttt 134
3.2.1 EXECUTIVE ODJECTS.....viiiiiiiiieeie et 137
3.2.2 ODJECE SEFUCTUIE.....cvieieieie e e s 138

3.3 SYNCNTONIZALION.ceeiiiieiiie e 171
3.3.1 High-IRQL Synchronization.............ccooceieiiiinninneeeseeneee e 172
3.3.2 Low-1RQL Synchronization............ccceoveiienienienin e 177

3.4 System WOrKer TRIeadScooviieiiiiiiie s 196
3.5 WINdows global FIagsc.coeeiiiiiiiiiiie s 198
3.6 Advanced Local Procedure Calls (ALPCS).....cccovveiininiieniiieneene e 201
3.7 Kernel VENT TraCingccccoeeiieiiiiesiee st 205
BB WVOWBS ...ttt bbbttt b bt beereeneenes 210
3.8.1 Wow64 Process Address Space Layoutccccooeveereninneenieneene 211
3.8.2 SYSIEM CallS....cciiiiiiee s 211
3.8.3 Exception DispatChingccoccieeiiiiinie e 212
3.8.4 User Callbacks.........ccoiiiiiieiiie e 212
3.8.5 File System RedireCtionccoceiiiiiiiniieee e 212
3.8.6 Registry Redirection and Reflectionccccvviviiiinniici, 213
3.8.7 1/O CoNtrol REQUESTS......cceeiiiieiiieiieee e 214
3.8.8 16-Bit Installer APPlIiCAtioNScooeeiiiiiiiiie e 214
3.8.9 PrINTING ..ccuiiiiiiie e s 214
3.8.10 RESIIICTIONS. .. .iiuiiiieeieeiie sttt 215

3.9 user-Mode DebugQINg........cccoeiiiiiiiiiie s 215
3.9.1 Kernel SUPPOIT.......coiiiieieiie e 215
3.9.2 NALIVE SUPPOIT ..ottt et 217
3.9.3 Windows SUbSYyStem SUPPOITccooeeiiiieiiiie e 218
3.10 IMAQE LOAEY ...t e 218
3.10.1 Early Process Initializationcccooeiieiinieninneee e 220
3.10.2 Loaded Module Database............cccoceveiiniiiiinie e 221
3.10.3 IMPOIt PArSING ...ccoivieiiiiiesiieieeie ettt 224
3.10.4 Post Import Process Initializationccooceveeiinieienicicce, 226
3.11 HYPerviSOr (HYPEI-V) .ot 226
TN O T €T RSP PRPPRT 228
3.11.2 ROOE PArTitION ..o 228
3.11.3 Child Partitionscccoviiiieiiiie e 230
3.11.4 Hardware Emulation and SUppOrt.........ccccovveienenennceieceee 232
3.12 Kernel Transaction Man@ger...........coveueiienenieneene e 237
3.13 HOtPALCh SUPPOIT.. .ottt e 239

ii

3.14 Kernel Patch ProteCtionooooveiieeii 241

3.15 COUE INTEYIILY .ot e 244
316 CONCIUSION ... e bbb 245
4. Management MechaniSmSccocvvviieeiiie e 246
4.1 THE REGISTIY ..ottt nrs 246
4.1.1 Viewing and Changing the Registrycccccoovvviiiiieninneeicien 246
4.1.2 ReQISIIY USAQEciieiiiiieiieeie sttt sttt 246
4.1.3 RegiStry Data TYPEScoiieiiiieiieeie e 247
4.1.4 Registry Logical SErUCLUIEcccooviiiiniiie e 248
4.1.6 Monitoring Registry ACHIVITYccccoviiiiiiiie e 258
4.1.7 Registry INternals.........ccooooiiiiiiii s 261

4.2 SEIVICES. .. eeteenteetee ettt tee sttt sttt ettt et s b e et e s e e b e e be s st e sbeebe st e s beeaeeneenns 275
4.2.1 Service APPLICAIONS.ceeiiiieiiee s 276
4.2.2 The Service Control Manager...........ccocvevviieiienenieneene e e 291
4.2.3 SEIVICE SEAITUPD ...eovieiiiiie ittt sttt 293
A.2.4 SEAFTUP EFTOIS ..o 297
4.2.5 Accepting the Boot and Last Known Good............cccccevveenvnienennne. 298
4.2.6 SErViCe FallUreScooiiiiiiece s 300
4.2.7 SErvice SNULAOWN.......cceiiiiieiie e 300
4.2.8 Shared ServiCe PrOCESSES........cueiiiiriierieeiesiee e eee st 302
4.2.9 SEIVICE TAGS +eouveveeteeieeiiestieiesiee e e e sree st te st sreesaesseesbeeeesneenes 304
4.2.10 Service Control Programs.........cccoereeeiieneeie e 305

4.3 Windows Management instrumentation...........ccccccoovvveiinienenesie s 306
O I o €01V T [SRR 308
4.3.2 The Common Information Model and the Managed Object Format
LANQUAGE ettt 309
4.3.3 Class ASSOCIALIONcoiueeiiiiiiiieie e 311
4.3.4WMI IMplementation ..o 314
A.3.5WMI SECUNILY ..ot 315

4.4 Windows Diagnostic INFrastruCture............ccovvvienieniniie e 316
4.4.1WDI INStrumMENTALIONooviiviiiieie e 316
4.4.2 DiagnostiC POIICY SEIVICE........cccciiiiiieie e 316
4.4.3 Diagnostic FUNCtionality..........ccccooiiiiiiiiiniee e 317

4.5 CONCIUSION ...ttt 319
5. Processes, Threads, and JObsSccccoviiiiiiiiiii e, 320
5.1 Process INTErNalsSc.ooiiiiiiiieiiee s 320
5.1.1 Data SEFUCTUIES.......eiiiieiie ittt 320
5.1.2 Kernel Variables.........cccoiiiii e 327
5.1.3 Performance COUNTEIS......ccouoiiiie e 327
5.1.4 Relevant FUNCHIONS........cociiiiiiie e 328

5.2 PrOteCIEA PrOCESSESviveeiieniesiiesteeie st sie ettt 330
5.3 FIOW Of CreatePrOCESSccueeeiiiieiieeieeiie sttt 332

iii

5.3.1 Stage 1: Converting and Validating Parameters and Flags 333

5.3.2 Stage 2: Opening the Image to Be Executed...........ccccoovviiinenne. 334
5.3.3 Stage 3: Creating the Windows Executive Process Object
(PSPAIIOCALE- PIrOCESS) ...oveeuviiiieiiieiie ettt 337

5.3.4 Stage 4: Creating the Initial Thread and Its Stack and Context ..341
535 Stage 5 Performing Windows Subsystem-Specific

POSt-INITIAlIZATION ..o 342
5.3.6 Stage 6: Starting Execution of the Initial Threadc...ccccceeveee. 344
5.3.7 Stage 7: Performing Process Initialization in the Context of the New
PIOCESS. ... et 344
5.4Thread INTEINAIScooviiiiieeee e 351
5.4.1 DAta SEFUCTUIES.......eiiiieiieeieeetee ettt 351
5.4.2 Kernel Variables..........ccoiii s 358
5.4.3 Performance COUNTEIS......ccouoiiiieiiereeee e 358
5.4.4 Relevant FUNCLIONS........ccccoiiiiiiie e 359
545 Birth of @ Thread........cooooiiiieiiie s 359

5.5 Examining Thread aCtiVIty.........ccccovieiiiiinieiee s 360
5.6 Worker Factories (Thread POOIS)cccoviiiiiiiiiiie e 364
5.7 Thread SChedUIINGccooiiiiiie s 368
5.7.1 Overview of Windows Scheduling...........cccccooiiinniinnniec 368
5.7.2 Priority LEVEIScoo it 370
5.7.3 Windows Scheduling APIS.........ccooiiiiiiieiie e 372
5.7.4 Relevant TOOIScoviiiiiiiie s 372
5.7.5 Real-Time PriOritieS.......cccoiiiiiiiieiieieee e 374
5.7.6 Thread StAtesScoviieiiiiiiieie e 375
5.7.7 Dispatcher Databaseccooiieeiiiiinienieseeee s 378
5.7.8 QUANTUM ...ttt e e snae e nnnees 379
5.7.9 Scheduling SCENAKIOScccveiiiieiieieee s 386
5.7.10 ContexXt SWITCNING ...ccvoiiiiieiie s 390
5.7.11 1d1e TRFEA.....c.ei et 390
5.7.12 Priority BOOSES......cccueiiiiiiiieiiieie et 391
5.7.13 MUItIPrOCESSOI SYSTEIMSeiveiiiieiiieieeiee et 404
5.7.14 Multiprocessor Thread-Scheduling Algorithms............ccoceeeeee. 412
5.7.15 CPU RaALE LIMITS ..cveiiiiiiiieiieie e 413

SIS N (0] o @ o] [T £ ST RR R 414
5.9 CONCIUSION ..ot 419
B. SECUNTLY ...veiiiiie et 420
6.1 SECUNItY RATINGSovveiieiie e 420
6.2 Security System COMPONENTS.........coviiiiieriieierie e 422
6.3 ProteCting ODJECTS.....cuoiiiiiiice s 425
6.3.1 ACCESS CECKSiviiiieieeie st 426
6.3.2 Security Descriptors and Access CoNtrol.........ccccoocvevvreneeieninne. 448

6.4 Account Rights and Privileges ... 462

B.4.2 PIIVIIEOES ...t e 464
6.4.3 SUPEK PrIVIIEOES. ... 468

6.5 SECUNTLY AUAITING ..o.veeiiiie e 469
GIG I (o]0 o] o TSRO P R P 471
6.6.1 Winlogon INitializationcccceoeiieiiiinni e 472
6.6.2 USEI LOGON STEPS....ceiieieiieiiiieitieeiieesiee sttt 474

6.7 User account CONTIOl ..o s 478
6.7.1 VIrtualiZatioNoocveiiiiiiiee e s 478
B.7.2 EIEVALION ... s 484

6.8 Software Restriction POIICIESccccooiiiiiiieeee s 489
6.9 CONCIUSION ... 490
7. 1O SYSTEBM . 491
7.1 1/O System COMPONENTS......cc.eiiiiieiieie et sees 491
7.2 DEVICE DIIVEIS ...ttt 495
7.2.1 Types Of DEVICE DIIVELScccoiiiiiieicie e 495
7.2.2 SErUCtUre Of @ DIFIVEN ..o s 501
7.2.3 Driver Objects and Device ODJeCtScceevviiviiiiniiieeneeee 503
7.2.4 OPENING DEVICEScovieiieiieiiie ittt 508

7.3 1/O PrOCESSING....cveitiiriiiiie ittt sttt b e b e 514
7.3 L TYPES OF 1O s 514
7.3.2 1/0 Request to a Single-Layered Driverccccooevvneiieeienennn. 523
7.3.3 1/O Requests to Layered DriVers........cccocceviiiiiennenie e 529
7.3.4 1/O CanCellationccooieiieiiiie e 537
7.3.5 1/O Completion POIES........cooviiiiiiiieeeeseee s 541
7.3.6 /O PrioritiZation.........ccoooeeiieiiiie e 546
7.3.7 DFIVEr VEIITIEE e 551

7.4 Kernel-Mode Driver Framework (KMDF) ..o 553
7.4.1 Structure and Operation of a KMDF Driver.........ccccccooevvinnnenne. 553
7.4.2 KMDF Data MOlooviiiiiiiiie e 555
743 KMDF 1/O MOGEL ..o 559

7.5 user-Mode Driver Framework (UMDF)........cccoocoiiiiiiinnieee e 562
7.6 The Plug and Play (PNP) Managercccccooeiirnieienienieesee e 565
7.6.1 Level of Plug and Play SUPPOIt.......cccoviiiiiiie e 566
7.6.2 Driver Support for Plug and Playc.ccoceviiiiiniiieneee 567
7.6.3 Driver Loading, Initialization, and Installation...............cc.ccece..... 569
7.6.4 Driver Installation...........ccoooeiiiiiiie e 578

7.7 The POWEE IMANAJETciiieieiiie sttt 582
7.7.1 Power Manager OPeration..........ccoveeuereeneniiesee e 584
7.7.2 Driver POWer OPerationcoccooveieeieneenenie e 585
7.7.3 Driver and Application Control of Device POWErc.cccccevueenee. 589

7.8 CONCIUSION ... 589
8. Storage Managementoooiiiieiiiiie e 591

8.1 Storage TermMiNOIOQYccoueiieiiiieiieie e e 591

8.2 DISK DIFIVEIS ...ttt ettt 592
B.2. L WINIOAAeiiieiiee e 592
8.2.2 Disk Class, Port, and Miniport DFIVErScccocevenieneeneeeseeee 592
8.2.3 DiSK DeViICe ODJECLSeoiveiiieiiiie et 596
8.2.4 Partition ManNaAger.........cccueiiiiieie e 597

8.3 Volume Managementcoueiiiiiiieiiiie e e 598
8.3.1 BASIC DISKS ...uveiuiiiiieiiieie ettt e 598
8.3.2 DYNAMIC DISKS......ueiiiieiiiiieiieeiie ettt 600
8.3.3 Multipartition Volume Management...........ccoccevveevenienennenieeseenee 605
8.3.4 The Volume NamEeSPACE.cccueuererriieiesie e 615
8.3.5Volume 1/O OPEratioNS........cccueieeiieieiie e 621
8.3.6 Virtual DiSK SEIVICEc.ccouiiiiiiiiiiiee e 623

8.4 BitLocker Drive eNCryptionccooeeiiiiniieie e 625
8.4.1 BitLocker ArChiteCtUre........cocviieiieeee e 625
8.4.2 ENCryption KEYS.....coieiiiieeieeit et 626
8.4.3 Trusted Platform Module (TPM) ... 628
8.4.4 BitLOCKEr BOOL PIOCESSeeeuviiiieiiieieeiie e 630
8.4.5 BitLocker Key RECOVEIYccoiiiiiiiiiie e 631
8.4.6 Full Volume ENCryption DFIVENccoeiiiiiiiiiie e 632
8.4.7 BitLocker Management..........cooueiveiieienienesee e 633

8.5 Volume Shadow COpPY SEIVICEccoveiiiieiieie e 633
8.5.1 SNAAOW COPIES ...ttt 634
8.5.2 VSS AFChITECIUNE ..o s 634
8.5.3 VSS OPEIatioN........cceeiiiiiiiiieiiiie et 635
8.5.4 USES IN WINAOWS........oeiiiiiiiiiiieiiieie et 637

8.6 CONCIUSION ... e et 642

9. Memory Management..........cocuveeiiiiieiiiiee e 643

9.1 Introduction to the Memory Managerccccoeeveenienenieseeneee s 643

9.2 Services the Memory Manager Providescccoceveieenennennncene e 647
9.2.1 Large and Small Pagescccueviiiriieiieiie e 648
9.2.2 Reserving and Committing Pagesccccoceiinieiieneniie e 649
9.2.3 LOCKING MEMIOKY ...ttt e 650
9.2.4 Allocation Granularity..........ccccoceiiiiniiiieie e 651
9.2.5 Shared Memory and Mapped Files.........cccocviiiiiiniiienie e 651
9.2.6 Protecting MEmOKYccciiiiiieieiie e 654
9.2.7 No Execute Page ProteCtionccocceevrieeiieiinnienceee e 655
0.2.8 COPY-0N-WIITE.....cueiiiieie ettt 659
9.2.9 Address WIindowing EXTENSIONS........cccceieeienieninninie e 661

9.3 Kernel-Mode Heaps (System Memory PoOIS)c.ccccveviveiieiieciicinen, 662
0.3.1 POOI SIZES.....eiiieiiie ettt 663
9.3.2 MONItoring POOI USAQEcceiiiieiieiieie e 665
0.3.3 LOOK-ASIAE LISTS.....ccieitiiiiiiieiiieie st 668

vi

9.4 Heap MaANAGETcccoiiiiiiieiiee s 669

0.4.1 TYPES OF HEAPS....cvee e e 670
9.4.2 Heap Manager SIFUCTUTE...........oouiiiieiieeiee e 670
9.4.3 Heap SyNChronizationcccoceiieiinieiienece e 671
9.4.4 The Low Fragmentation Heap.........cccoceveeriiiniieienie e 672
9.4.5 Heap Security FEAtUIEScccoeiiiiieie s 673
9.4.6 Heap Debugging Featuresccoovvieieiieninie e 674
0.4.7 PAQBNEAD .t 674
9.5 Virtual address Space 1ayOuUtS.........ccooviieriiieiiece s 675
9.5.1 x86 AdAress SPAce LayOULS........ccccereeieririienienee e 676
9.5.2 x86 System Address Space Layoutcccceevereeneniienenneeniesee e 679
9.5.3 XBB6 SESSION SPACEeeveriiiiieiieiiesiee ettt 679
9.5.4 System Page Table ENTIIescccoooviieiiieiiee e 682
9.5.5 64-Bit Address SPace LayOuULS.........cccoeueiiererienienieeie e 684
9.5.6 64-Bit Virtual Addressing LIimitations...........cccocevenieninnenneninne 686
9.5.7 Dynamic System Virtual Address Space Management.................. 689
9.5.8 System Virtual Address Space QUOLaSc..cccvevvveeiieiieevie e, 692
9.5.9 User Address Space LayOuUL...........cccoceeuerieniniienin e 693
9.6 AAAress TranSIationccooeeiiiiiiiie s 697
9.6.1 x86 Virtual Address Translation............cccceveiiiiininncnie e 697
9.6.2 Translation Look-Aside BUffer ... 703
9.6.3 Physical Address Extension (PAE) ..o 704
9.6.4 1A64 Virtual Address Translationcccccevvvnnenienenneeene e 707
9.6.5 x64 Virtual Address Translation............ccccovveviniiiinne e 708
9.7 Page Fault HaNdliNgccooiiiiiiiieseeee s 709
0.7.1 INVAIA PTESociiieiee sttt 710
0.7.2 PrototyPe PTES ...c.eeiieit e 711
9.7.3 IN-PAgiNg /O ...c.eoiiiiiee e 713
9.7.4 Collided Page FaultScccueiiiieiiiieeie s 714
9.7.5 Clustered Page Faults.........cccceiiiiiinieeeee s 714
0.7.6 PAQE FIIES ..o s 715
0.8 SEACKS. ... e 719
9.9 Virtual address DESCIIPIONScciveiiiieiieie e 721
0,00 NUMAL ...ttt sttt ettt be b e ereeneareeneas 724
9.11 SECLION ODJECTS ...ocuviiviiiiie et 725
0.12 DIIVEE VEIIFIEY .ot 732
9.13 Page Frame Number Databasecccceveeriiinniiicce e 736
0.13.1 Page LiSt DYNAMICS......ccceieeriiaieiiieiieeie et 739
0.13.2 PAQE PrIOFITY ..cuiiiiiieiieie ettt 740
9.13.3 Modified Page WIITEEccciiieiieiieee e s 743
0.13.4 PFN Data SEFUCKUIES......cceieieiiiiie ittt 744
9.14 Physical Memory HMITScoooiiiiie e 748
0.15 WOIKING SEES....c.ueiitiiiiiie ettt et 752
9.15.1 Demand PagiNgccceeueiieiieieiie e see et 753

vii

10.

11.

9.15.2 Logical PrefetCher.........cooieiiiiiieceeesee s 753

9.15.3 PIacemMent POLICYccveiiiieiiiie e 757
9.15.4 Working Set Management...........ccooeeueieereniienee e 757
9.15.5 Balance Set Manager and SWappPer.........ccccooeveeneereneeneenieseenens 760
9.15.6 System WOrKINg Set........cccoiiiiiiiiiee e 761
9.15.7 Memory Notification EVENES........ccccoviiiiiiiiii e 762
9.16 Proactive Memory Management (SuperFetch)........cccoceviiiniicine. 764
0.16.1 COMPONENTSeiiiiiiiie ettt b e be e 765
9.16.2 Tracing and LOGQINGccouereririierieniesieeniesie e 766
0.16.3 SCENAKIOS ...ttt sieeieeteestee s iee sttt e bbb se e beesbe st e sreenes 767
9.16.4 Page Priority and Rebalancing............cccoovviiiiiiiinne, 768
9.16.5 RODUSE Performance............cccoeeiieienie e 770
9.16.6 REAAYBOOSTcouiiiiiiieeie et 771
9.16.7 REAAYDIIVE ... e 772
9.17. CONCIUSION ...ttt 774
(0% 1ol o[-0 Y/ F-T g F- 1o [T SRR 775
10.1 Key Features of the Cache Managerccocevevenieiiiie e 775
10.2 Cache Virtual Memory Management...........cccoveeieneeneniieseeseenie e 779
10.3 CACNE SIZE ..ot 780
10.4 Cache Data StFUCTUIES.........coviiiieieeie et 784
10.4.1 Systemwide Cache Data StruCtures...........ccccovvereninieenesieeneeins 784
10.4.2 Per-File Cache Data StruCtUIESccccoverieiieniiiie e 786
10.5 File SyStem INTErTACESccviiiiieiicie e 791
10.5.1 Copying to and from the Cache...........cccooeiiieniiiies 792
10.5.2 Caching with the Mapping and Pinning Interfaces..................... 793
10.5.3 Caching with the Direct Memory Access Interfaces.................... 795
10.6 FASE 1O .ot 796
10.7 read ahead and Write behind.............ccccoooiiiiiinini e 798
10.7.1 Intelligent Read-Ahead..........ccooiiiiiiiiii e 798
10.7.2 Wrrite-Back Caching and Lazy Writingcccocceveieeneninniennns 799
10.7.3 Write TRIOTHHNGcoveiieiiecceeece e 805
10.7.4 SyStem TRIEadSccveiiiieieee e 807
10.8 CONCIUSION ...ttt ettt 808
File SYSTEMS.. .o 809
11.1 Windows File System FOrmats..........ccceviiiiiieniiieseenee e 810
11.2 File System Driver arcChiteCtureccooveiiiiriinee e 815
11.2. 1 LOCAI FSDS ...ttt 815
11.2.2 REMOTE FSDS......oiiiiiiiiieeteeee et 816
11.2.3 File System OPeration..........coccoveeiiieiieie e 819
11.2.4 File System Filter DIIVErS.......ccoooiiiiie e 824
11.3 Troubleshooting File System Problems ... 825
11.4 Common 10g File SYSTEMcc.ooiiiiiiecieee e 827

viii

12.

13.

11.5 NTFS Design goals and FEAtUIEScccccueririeiiininie et 834

11.5.1 High-End File System RequIrementscccocevernieenenenseennens 834
11.5.2 Advanced Features Of NTFS ... 835
11.6 NTFS File SYStem DIIVELcccooiiiieiieiiee e 847
11.7 NTFS ON-DisSK StFUCTUIEooviiiiiiieiiieiesie et 850
11.8 NTFS reCOVEINY SUPPOIT.......ooiiiiiiiiieitie et 882
I 0 XS] T | o PSSP USRS RPROR 883
11.8.2 Metadata LOGGING ...cc.cooveieeieiieniesieeie e sie et 884
11.8.3 RECOVEIY ...ttt ne e 888
11.8.4 NTFS Bad-CluSter RECOVEIYccoviieiiiriiiiesieeie e 891
11.8.5 Self-HealiNg......ccooieiiie e 894
11.9 Encrypting File SyStem SECUNIY........ccccoviiiiiiiiinie e 895
11.9.1 Encrypting a File for the First Time.........ccoccooviiinniiniien 898
11.9.2 The Decryption PrOCESScccccvieererieiiieiieseesieesie e sieeee s 902
11.9.3 Backing Up Encrypted FilesS........cccooiiiiniiiiniiie e 903
12.20 CONCIUSION. ..ottt sttt sreeae s 904
NETWOTKING.....eiiiiiie e 905
12.1 Windows Networking ArchiteCtureoccoooveiineneniie e 905
12.1.1 The OSI Reference Model ..o 905
12.1.2 Windows Networking CoOmpoNeNnts..........ccoceveerienieneeneniee e 907
12.2 NEIWOIKING APIS ...t 909
12.2.1 WINAOWS SOCKETS........coiuiiiieieiiiesieeie et 910
12.2.2 Winsock Kernel (WSK)ooiiiiiiiieiieicseseee e 915
12.2.3 Remote Procedure Call...........ccoooiiiiiiiiiceeee e 917
12.2.4 WWebD ACCESS APIS ..o 921
12.2.5 Named Pipes and MailSIotsccccooviiinininiicceeec e 923
12.2.6 NEIBIOS ... et 928
12.2.7 Other Networking APIScoooiieiiiieeeeee e 930
12.3 Multiple redireCtor SUPPOIT........cooviiiiieiiiie e 934
12.3.1 Multiple Provider ROULENcccoiiiiiiiiieeee e 934
12.3.2 Multiple UNC ProVIGEYccooviiieiieieciesieeie e 937
12.4 NaME FESOIULION ...ocveiiiiiiecce e e 938
12.5 Location and TOPOIOGYcccveeeriiriiiieiieiisie e 941
12.6 PrOtOCOI DFIVELS ...ooveiiiieiieie ettt 943
12.7 NDIS DEIVEIS. ..ttt sttt esbe e sneenne s 952
12.7.1 Variations on the NDIS Miniportcccccooeieiiiniienenieneene 955
12.7.2 Connection-Oriented NDIS...........ccooiiiiiiieeeee e 956
12.7.3 RemMOtE NDIS ... 958
12.7.4 QOS ...ttt ae s 959
12.8 BINAINGeiiiiiiiii ettt ae s 961
12.9 Layered NetWOrK SEIVICEScccoiirieiieiiaie ettt 962
12,10 CONCIUSION ..ottt ettt nae s 967
Startup and ShutdoWn ..o 968

14,

13,1 BOOt PrOCESS. .. ittt e ettt e e e e e et e e e e e e e et e e eena e eaees 968

13.1.1 BIOS Prebootcccoiiiiiiieeeeseseee e 968
13.1.2 The BIOS Boot Sector and BoOtmMQrccccocveeveeieiieneniesieins 970
13.1.3 The EF1 BOOt PrOCESScooiiiiiiieiieie e 979
13.1.4 Initializing the Kernel and Executive Subsystems...........c...c...... 980
13.1.5 Smss, Csrss, and WININITc.oooeiiiiiiiiieie e 985
13.1.6 REAAYBOOL........coitiiiiiiieie e 990
13.1.7 Images That Start Automatically..........cccccooeiiiiiiiiiine, 991
13.2 Troubleshooting Boot and Startup Problemsccociviiiiiiiiiiinnne 992
13.3 SPULAOWN ...t et 1004
13.4 CONCIUSION ..ttt ettt 1007
Crash Dump ANalYSIsScoovvviiiiiiiieecie e 1008
14.1 Why D0es WINndows Crash?..........ccoceiiiiiiiin i 1008
14.2 THe BIUE SCIEEN......ocuiiiiiieiee et 1009
14.3 Troubleshooting Crashes..........cccovieiiiiiieicie e 1012
14.4 Crash DUMP FIIESooiiiieieece e 1014
14.5 WINAOWS €rror FePOFTING.......coiierieiie et 1019
14.6 ONlineg Crash analysSiS........ccoiiieiieieiie e e 1020
14.7 Basic Crash DUMP analysSiS........ccocueeiiriieiiiie e 1021
14.8 Using Crash Troubleshooting TOOIS..........ccccooviiiieniiiniee e 1025
14.8.1 Buffer Overrun, Memory Corruptions, and Special Pool......... 1026
14.8.2 Code Overwrite and System Code Write Protection................. 1029
14.9 Advanced Crash Dump analysis........c.cccooevineiinneninseeese e 1030
14.9.1 StaCK Trashes.......cco it 1031
14.9.2 Hung or UNresponsive SYSEMScccooveiierienieneerie e 1033
14.9.3 When There 1S No Crash DUMPcccoooiiiinininnienee e 1036
14,20 CONCIUSTION ..ttt et 1037

1. Concepts and Tools

In this chapter, we’ll introduce the key Microsoft Windows operating system concepts and
terms we’ll be using throughout this book, such as the Windows API, processes, threads, virtual
memory, kernel mode and user mode, objects, handles, security, and the registry. We’ll also
introduce the tools that you can use to explore Windows internals, such as the kernel debugger, the
Reliability and Performance Monitor, and key tools from Windows Sysinternals
(www.microsoft.com/technet/sysinternals). In addition, we’ll explain how you can use the
Windows Driver Kit (WDK) and the Windows Software Development Kit (SDK) as resources for
finding further information on Windows internals.

Be sure that you understand everything in this chapter—the remainder of the book is written
assuming that you do.

1.1 Windows Operating System Versions

This book covers the two most recent versions of the Microsoft Windows operating system
based on the Windows NT code base: Windows Vista (32-bit and 64-bit versions) and Windows
Server 2008 (32-bit and 64-bit versions). Unless specifically stated, the text applies to all versions.
As background information, Table 1-1 lists the releases of the Windows NT code base, their

internal version number, and the external product name.

TABLE -1 Windows Operating System Releases

Product Name Internal Version Number Release Date
Windows NT 3.1 51 July 1993
Windows NT 3.5 35 September 1994
Windows NT 3.51 351 May 1995
Windows NT 4.0 40 July 1996
Windows 2000 5.0 December 1999
Windows XP %! August 2001
Windows Server 2003 5.2 March 2003
Windows Vista 6.0 (Build 6000) January 2007

Windows Server 2008 6.0 (Build 6001) March 2008

1.2 Foundation Concepts and Terms

In the course of this book, we’ll be referring to some structures and concepts that might be
unfamiliar to some readers. In this section, we’ll define the terms we’ll be using throughout..

You should become familiar with them before proceeding to subsequent chapters.

1.2.1 Windows API

The Windows application programming interface (API) is the system programming interface
to the Windows operating system family. Prior to the introduction of 64-bit versions of Windows
XP and Windows Server 2003, the programming interface to the 32-bit versions of the Windows
operating systems was called the Win32 API, to distinguish it from the original 16-bit Windows
API, which was the programming interface to the original 16-bit versions of Windows. In this
book, the term Windows API refers to both the 32-bit and 64-bit programming interfaces to
Windows Vista and Windows Server 2008.

Note The Windows API is described in the Windows Software Development Kit (SDK)
documentation.(See the section “Windows Software Development Kit” later in this chapter.) This
documentation is available for free viewing online at www.msdn.microsoft.com. It is also
included with all subscription levels to the Microsoft Developer Network (MSDN), Microsoft’s

support program for developers. For more information, see www.msdn.microsoft.com. An

excellent description of how to program the Windows base API is the book Windows via C/C++,
Fifth Edition by Jeffrey Richter and Christophe Nasarre (Microsoft Press, 2007).

The Windows API consists of thousands of callable functions, which are divided into the
following major categories:

m Base Services

m Component Services

m User Interface Services

m Graphics and Multimedia Services
m Messaging and Collaboration

m Networking

m Web Services

This book focuses on the internals of the key base services, such as processes and threads,
memory management, I/O, and security.

What about .Net?

The .NET Framework consists of a library of classes called the Framework Class Library
(FCL) and a Common Language Runtime (CLR) that provides a managed code execution
environment with features such as just-in-time compilation, type verification, garbage collection,
and code access security. By offering these features, the CLR provides a development
environment that improves programmer productivity and reduces common programming errors.
For an excellent description of the .NET Framework and its core architecture, see CLR via C#,
Second Edition by Jeffrey Richter (Microsoft Press,2006).

The CLR is implemented as a classic COM server whose code resides in a standard user
mode Windows DLL. In fact, all components of the .NET Framework are implemented as
standard user-mode Windows DLLs layered over unmanaged Windows API functions. (None of
the .NET Framework runs in kernel mode.) Figure 1-1 illustrates the relationship between these

components:

.NET Application
(Standard User-Mode EXEs)

User mode
(managed code)

Framework Class Library Assembilies
(Standard User-Mode DLLs)

CLR DLLs

User mode (COM server)
(unmanaged code)

Windows APl DLLs

Kernel mode Windows Kernel

FIGURE 1-1 Relationship between .NET Framework components

History of the Win32 API

Interestingly, Win32 wasn’t slated to be the original programming interface to Microsoft
Windows NT. Because the Windows NT project started as a replacement for OS/2 version 2, the
primary programming interface was the 32-bit OS/2 Presentation Manager API. A year into the
project, however, Microsoft Windows 3.0 hit the market and took off. As a result, Microsoft
changed direction and made Windows NT the future replacement for the Windows family of
products as opposed to the replacement for OS/2. It was at this juncture that the need to specify
the Windows API arose—before this, the Windows API existed only as a 16-bit interface.

Although the Windows API would introduce many new functions that hadn’t been available
on Windows 3.1, Microsoft decided to make the new API compatible with the 16-bit Windows
API function names, semantics, and use of data types whenever possible to ease the burden of
porting existing 16-bit Windows applications to Windows NT. So those of you who are looking at
the Windows API for the first time and wondering why many function names and interfaces seem
inconsistent should keep in mind that one reason for the inconsistency was to ensure that the
Windows API is compatible with the old 16-bit Windows API.

1.2.2 Services, Functions, and Routines

Several terms in the Windows user and programming documentation have different meanings
in different contexts. For example, the word service can refer to a callable routine in the operating
system, a device driver, or a server process. The following list describes what certain terms mean
in this book:

mWindows API functions Documented, callable subroutines in the Windows API. Examples
include CreateProcess, CreateFile, and GetMessage.

m Native system services (or executive system services) The undocumented, underlying
services in the operating system that are callable from wuser mode. For example,
NtCreateProcessEx is the internal system service the Windows CreateProcess function calls to
create a new process. (For a definition of native functions, see the section “System Service
Dispatching” in Chapter 3.)

m Kernel support functions (or routines) Subroutines inside the Windows operating system
that can be called only from kernel mode (defined later in this chapter). For example,
ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the
Windows system heaps (called pools).

m Windows services Processes started by the Windows service control manager. (Although
the registry defines Windows device drivers as “services,” we don’t refer to them as such in this
book.) For example, the Task Scheduler service runs in a user-mode process that supports the at

command (which is similar to the UNIX commands at or cron).

m DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary file
that can be dynamically loaded by applications that use the subroutines. Examples include
Msvert.dll (the C run-time library) and Kernel32.dll (one of the Windows API subsystem
libraries). Windows user-mode components and applications use DLLs extensively. The
advantage DLLs provide over static libraries is that applications can share DLLs, and Windows
ensures that there is only one in-memory copy of a DLL’s code among the applications that are

referencing it.

1.2.3 Processes, Threads, and Jobs

Several terms in the Windows user and programming documentation have different meanings

in different contexts. For example, the word service can refer

Although programs and processes appear similar on the surface, they are fundamentally
different. A program is a static sequence of instructions, whereas a process is a container for a set
of resources used when executing the instance of the program. At the highest level of abstraction,
a Windows process comprises the following:

m A private virtual address space, which is a set of virtual memory addresses that the process

can use

m An executable program, which defines initial code and data and is mapped into the

process’s virtual address space

m A list of open handles to various system resources, such as semaphores, communication

ports, and files, that are accessible to all threads in the process

m A security context called an access token that identifies the user, security groups, privileges,
User Access Control (UAC) virtualization state, session, and limited user account state associated
with the process

m A unique identifier called a process ID (internally part of an identifier called a client ID)
m At least one thread of execution (although an “empty” process is possible, it is not useful)

Each process also points to its parent or creator process. However, if the parent exits, this
information is not updated. Therefore, it is possible for a process to point to a nonexistent parent.
This is not a problem, as nothing relies on this information being present. The following

experiment illustrates this case.

EXPERIMENT: Viewing the Process Tree

One unique attribute about a process that most tools don’t display is the parent or creator
process ID. You can retrieve this value with the Performance Monitor (or programmatically) by
querying the Creating Process ID. The Tlist.exe tool (in the Debugging

Tools for Windows) can show the process tree by using the /t switch. Here’s an example of

output from tlist /t:

C:\>tlist /t
System Process (0)
System (4)
smss.exe (480)
csrss.exe (548)
wininit.exe (612)
services.exe (656)
svchost.exe (848)
svchost.exe (880)
svchost.exe (924)
svchost.exe (980)

N O N o O

—_
—_ O

12. audiodg.exe (1040)

13. svchost.exe (1108)
14. dwm.exe (123)
15. svchost.exe (96)

16. taskeng.exe (604)
17. tasking.exe (1532)
18. SLsvc.exe (1814)
19. svchost.exe (2988)
20. Isass.exe (672)

21. Ism.exe (680)

22. csrss.exe (624)

23. winlogon.exe (824)

24. explorer.exe (724) Program Manager

25. WINWORD.EXE (3512) WinInt5E_Chapter0O1.doc [Compatibility Mode]
- Microsoft Word

26. cmd.exe (3936) Command Prompt - tlist /t

27. tlist.exe (1344)

The list indents each process to show its parent/child relationship. Processes whose parents
aren’t alive are left-justified (as is Explorer.exe in the preceding example) because even if a
grandparent process exists, there’s no way to find that relationship. Windows maintains only the
creator process ID, not a link back to the creator of the creator, and so forth.

To demonstrate the fact that Windows doesn’t keep track of more than just the parent process
ID, follow these steps:

. Open a Command Prompt window.

. Type start cmd (which starts a second command prompt).

. Bring up Task Manager.

. Switch to the second command prompt.

. Type mspaint (which runs Microsoft Paint).

. Click the intermediate (second) Command Prompt window.

. Type exit. (Notice that Paint remains.)

. Switch to Task Manager.

. Click the Applications tab.

10. Right-click on the Command Prompt task, and select Go To Process.

O 0 3 &N L A~ W N =

11. Click on the Cmd.exe process highlighted in blue.
12. Right-click on this process, and select End Process Tree.

13. Click Yes in the Task Manager Warning message box.

The first Command Prompt window will disappear, but you should still see the Paint window
because it was the grandchild of the command prompt process you terminated; and because the
intermediate process (the parent of Paint) was terminated, there was no link between the parent
and the grandchild.

A number of tools for viewing (and modifying) processes and process information are

available. The following experiments illustrate the various views of process information you can

obtain with some of these tools. These tools are included within Windows itself and within the
Debugging Tools for Windows, the Windows SDK, and from Sysinternals. Many of these tools
show overlapping subsets of the core process and thread information, sometimes identified by

different names.

Probably the most widely used tool to examine process activity is Task Manager.
(Interestingly, there is no such thing as a “task” in the Windows kernel, so Task Manager is really
a tool to manage processes.) The following experiment shows the difference between what Task
Manager lists as applications and processes.

EXPERIMENT: Viewing Process information with Task Manager

The built-in Windows Task Manager provides a quick list of the processes running on the
system. You can start Task Manager in one of three ways: (1) press Ctrl+Shift+Esc, (2) right-click
on the taskbar and select Task Manager, or (3) press Ctrl+Alt+Delete and click the Task Manager
button. Once Task Manager has started, click the Processes tab to see the list of running processes.
Notice that processes are identified by the name of the image of which they are an instance.
Unlike some objects in Windows, processes can’t be given global names. To display additional
details, choose Select Columns from the View menu and select additional columns to be added, as

shown here:

Although what you see in the Task Manager Processes tab is clearly a list of processes, what
the Applications tab displays isn’t as obvious. The Applications tab lists the top-level visible
windows on all the desktops in the interactive window station. (By default, there are two desktop
objects—you can create more by using the Windows CreateDesktop function.) The Status column
indicates whether or not the thread that owns the window is in a Windows message wait state.
“Running” means the thread is waiting for windowing input; “Not Responding” means the thread
isn’t waiting for windowing input (for example, the thread might be running or waiting for I/O or
some Windows synchronization object).

From the Applications tab, you can match a task to the process that owns the thread that owns
the task window by right-clicking on the task name and choosing Go To Process.

Select the columns that will appear on the Process page of the Task
Manager.

Session ID

CPL Usage

P Tirne

Mernary - Morking Set
Memary - Peak Working Set
Memary - YWarking Set Delka
Mermory - Private Working Sek
[¥] Memory - Commit Size
Memory - Paged Pool
Memory - Mon-paged Pool
Page Faults

Page Faulk Delta

Base Priority

Handles

Threads

'___Eiie Options Miew Windows Help

Applications | processes | Services | Performance | Metworking | users |

Task — Skabus
‘E ntdef.h - Mokepad FLunning
L D5 S Founining
@58|8Et CHwwindows system32omd. exe F.unining
DAlInDhg: 6, 7, 0005, 1 Funning
| Erd Task Switch To | [new Task... |
Processes: 45 CPU Usage: 1% Physical Memony: 262

Process Explorer, from Sysinternals, shows more details about processes and threads than
any other available tool, which is why you will see it used in a number of experiments throughout
the book. The following are some of the unique things that Process Explorer shows or enables:

m Full path name for the image being executed

m Process security token (list of groups and privileges, virtualization state, and session)

m Highlighting to show changes in the process and thread list

m List of services inside service-hosting processes, including display name and description
m Processes that are part of a job and job details

m Processes running .NET applications and .NET-specific details (such as the list of app

domains and CLR performance counters)
m Start time for processes and threads
m Complete list of memory-mapped files (not just DLLs)
m Ability to suspend a process
m Ability to kill an individual thread

m Easy identification of which processes were consuming the most CPU time over a period
of time (The Reliability and Performance Monitor can display process CPU utilization for a given
set of processes, but it won’t automatically show processes created after the performance

monitoring session has started—only a manual trace in binary output format can do that.)
Process Explorer also provides easy access to information in one place, such as:
m Process tree (with ability to collapse parts of the tree)

m Open handles in a process (including unnamed handles) without prior setup (The Microsoft
tools to show open handles require the setting of a systemwide flag and a reboot before they can
be used.)

m List of DLLs (and memory-mapped files) in a process
m Thread activity within a process

m User-mode thread stacks (including mapping of addresses to names using the debugging

tools’ symbol engine)

m Kernel-mode thread stacks for system threads (including mapping of addresses to names

using the debugging tools’ symbol engine)
m Context switch delta (a better representation of CPU activity, as explained in Chapter 5)

m Time stamp counter (an even better representation of precise CPU activity, as explained in
Chapter 5)

m 64-bit vs. 32-bit image type

m Integrity level

m Virtualization state
m Kernel memory (paged and nonpaged pool) limits (other tools show only current size)

An introductory experiment using Process Explorer follows.

EXPERIMENT: Viewing Process Details with Process explorer

Download the latest version of Process Explorer from Sysinternals and run it. The first time
you run it, you will receive a message that symbols are not currently configured. If properly
configured, Process Explorer can access symbol information to display the symbolic name of the
thread start function and functions on its call stack (available by double-clicking on a process and
clicking on the Threads tab). This is useful for identifying what threads are doing within a process.
To access symbols, you must have the Debugging Tools for Windows installed (described later in
this chapter). Then click on Options, choose Configure Symbols, and fill in the appropriate
symbols path. For example:

Configure Symbols ()

Process Explorer uzes symbaols ta resolve function names when dizplaying thread start
addreszes and thread stack locations on the Threads tab of a process' properties
dialog.

If yau do nat requirg that infarmation yau do nat need b configure spmbols.

Dbghelp. dll path:

C:\Pragram FilezhDebugaing Toak for WindowshDbgHelp dll [:]

Suymbaolz path:

zrv o haymbolz’hittp: A fmzdl microsoft. comddownload, spmbols E]
| ak | [Caticel]

In the preceding example, the on-demand symbol server is being used to access symbols and
a copy of the symbol files is being stored on the local machine in the c:\symbols folder. For more

information on configuring use of the symbol server, see www.microsoft.com/whdc/dev tools
/debugging/debugstart.mspx.

When Process Explorer starts, it shows by default the process list on the top half and the open
handles for the currently selected process on the bottom half. It also shows tooltips for four kinds

of hosting processes:

m The running services inside a service-hosting process (Svchost.exe) if you hover your

mouse over the name
m The running COM object tasks part of a Taskeng.exe process
m The target of a Rundll32.exe process (used for things such as Control Panel items)
m The COM object being hosted inside a Dllhost.exe process
Here are a few steps to walk you through some basic capabilities of Process Explorer:

10

1. Turn off the lower pane by deselecting View, Show Lower Pane. (The lower pane can
show open handles or mapped DLLs and memory-mapped files—these are explored in Chapters 3
and 9.)

2. Notice that processes hosting services are highlighted by default in pink. Your own

processes are highlighted in blue. (These colors can be configured.)

3. Hover your mouse pointer over the image name for processes, and notice the full path

displayed by the tooltip.
4. Click on View, Select Columns, and add the image path.

5. Sort on the process column, and notice the tree view disappears. (You can either display
tree view or sort by any of the columns shown.) Click again to sort from Z to A. Then click again,

and the display returns to tree view.

6. Deselect View, Show Processes From All Users to show only your processes.

[Q.fP:mE:cpbrer-Sﬁ]Mmﬂnm&ﬁiﬁtmhwmiAIm-[apmﬂuﬂlucMu] o]
hle Optons Uew Poces Find Usen Help
Wao=cEs o ae M ___
Frocess FiD CPL Desciiption Gompany Name Ine priy
¥ ymnatexs 200
T suchostaxo 36
F 1! Searchindexerexe | 460
¥ SearchProtocal..| 3804
B SearchFiteiHo . | 340
®lymware-authd.exe | 560
T vmnethcp.axe [
1| Lsnave exp 40132
Elsass exe w0
Llkcm oxg fild _
Llwinlogonexe Services: -
| B explorer e CNG Key lsolafian [Keylac] Explorer Microsofl Comporabion. Madium
B ingonhlp exe S-a.,.]rtg,ﬂccnurtsManagarfﬁamﬂm NT Logon HelperA. Mictosoff Comporation Medium =
& wmpnecig axe Mediz Playar Maia. MicrazoftCarporation Madium
& TSVNC acha sk 2556 TompisaSVh stalis cache wwwinoisesvaorg Madium
& manmaqr.exe I Windows Live Messenger MicrasoftCorporation Medium i
CPU Usnge: 108% Cormit Charge: 1850% Processen 52

7. Go to Options, Difference Highlight Duration, and change the value to 5 seconds. Then
launch a new process (anything), and notice the new process highlighted in green for 5 seconds.
Exit this new process, and notice the process is highlighted in red for 5 seconds before
disappearing from the display. This can be useful to see processes being created and exiting on

your system.

8. Finally, double-click on a process and explore the various tabs available from the process
properties display. (These will be referenced in various experiments throughout the book where

the information being shown is being explained.)

A thread is the entity within a process that Windows schedules for execution. Without it, the

process’s program can’t run. A thread includes the following essential components:

11

m The contents of a set of CPU registers representing the state of the processor.

m Two stacks, one for the thread to use while executing in kernel mode and one for executing

in user mode.

m A private storage area called thread-local storage (TLS) for use by subsystems, run-time
libraries, and DLLs.

m A unique identifier called a thread ID (also internally called a client ID—process IDs and

thread IDs are generated out of the same namespace, so they never overlap).

m Threads sometimes have their own security context that is often used by multithreaded

server applications that impersonate the security context of the clients that they serve.

The volatile registers, stacks, and private storage area are called the thread’s context. Because
this information is different for each machine architecture that Windows runs on, this structure, by
necessity, is architecture-specific. The Windows GetThreadContext function provides access to
this architecture-specific information (called the CONTEXT block).

Fibers vs. Threads

Fibers allow an application to schedule its own “threads” of execution rather than rely on the
priority-based scheduling mechanism built into Windows. Fibers are often called “lightweight”
threads, and in terms of scheduling, they’re invisible to the kernel because they’re implemented in
user mode in Kernel32.dll. To use fibers, a call is first made to the Windows
ConvertThreadToFiber function. This function converts the thread to a running fiber. Afterward,
the newly converted fiber can create additional fibers with the CreateFiber function. (Each fiber
can have its own set of fibers.) Unlike a thread, however, a fiber doesn’t begin execution until it’s
manually selected through a call to the SwitchToFiber function. The new fiber runs until it exits or
until it calls SwitchToFiber, again selecting another fiber to run. For more information, see the

Windows SDK documentation on fiber functions.

Although threads have their own execution context, every thread within a process shares the
process’s virtual address space (in addition to the rest of the resources belonging to the process),
meaning that all the threads in a process can write to and read from each other’s memory. Threads
cannot accidentally reference the address space of another process, however, unless the other
process makes available part of its private address space as a shared memory section (called a file
mapping object in the Windows API) or unless one process has the right to open another process

to use cross-process memory functions such as ReadProcessMemory and WriteProcessMemory.

In addition to a private address space and one or more threads, each process has a security
identification and a list of open handles to objects such as files, shared memory sections, or one of

the synchronization objects such as mutexes, events, or semaphores, as illustrated in Figure 1-2.

Every process has a security context that is stored in an object called an access token. The
process access token contains the security identification and credentials for the process. By default,
threads don’t have their own access token, but they can obtain one, thus allowing individual

threads to impersonate the security context of another process—including processes running on a

remote Windows system—without affecting other threads in the process. (See Chapter 6 for more
details on process and thread security.)

The virtual address descriptors (VADs) are data structures that the memory manager uses to
keep track of the virtual addresses the process is using. These data structures are described in more
depth in Chapter 9.

Windows provides an extension to the process model called a job. A job object’s main
function is to allow groups of processes to be managed and manipulated as a unit. A job object
allows control of certain attributes and provides limits for the process or processes associated with
the job. It also records basic accounting information for all processes associated with the job and
for all processes that were associated with the job but have since terminated. In some ways, the
job object compensates for the lack of a structured process tree in Windows—yet in many ways it
is more powerful than a UNIX-style process tree.

Access token Virtual address descriptors (VADs)
Process
object
Handle table

—| Object

——| Object

w

Thread> Thread> Thread> e

Access token

FIGURE 1-2 A process and its resources

You’ll find out much more about the internal structure of jobs, processes and threads, the

mechanics of process and thread creation, and the thread-scheduling algorithms in Chapter 5.

To a callable routine in the operating system, a device driver, or a server process. The
following list describes what certain terms mean in this book:

mWindows API functions Documented, callable subroutines in the Windows API. Examples
include CreateProcess, CreateFile, and GetMessage.

m Native system services (or executive system services) The undocumented, underlying
services in the operating system that are callable from wuser mode. For example,
NtCreateProcessEx is the internal system service the Windows CreateProcess function calls to

13

create a new process. (For a definition of native functions, see the section “System Service
Dispatching” in Chapter 3.)

m Kernel support functions (or routines) Subroutines inside the Windows operating system
that can be called only from kernel mode (defined later in this chapter). For example,
ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the
Windows system heaps (called pools).

m Windows services Processes started by the Windows service control manager. (Although
the registry defines Windows device drivers as “services,” we don’t refer to them as such in this
book.) For example, the Task Scheduler service runs in a user-mode process that supports the at
command (which is similar to the UNIX commands at or cron).

m DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary file
that can be dynamically loaded by applications that use the subroutines. Examples include
Msvert.dll (the C run-time library) and Kernel32.dll (one of the Windows API subsystem
libraries). Windows user-mode components and applications use DLLs extensively. The
advantage DLLs provide over static libraries is that applications can share DLLs, and Windows
ensures that there is only one in-memory copy of a DLL’s code among the applications that are

referencing it.

1.2.4 Virtual Memory

Windows implements a virtual memory system based on a flat (linear) address space that
provides each process with the illusion of having its own large, private address space. Virtual
memory provides a logical view of memory that might not correspond to its physical layout. At
run time, the memory manager, with assistance from hardware, translates, or maps, the virtual
addresses into physical addresses, where the data is actually stored. By controlling the protection
and mapping, the operating system can ensure that individual processes don’t bump into one
another or overwrite operating system data. Figure 1-3 illustrates three virtually contiguous pages
mapped to three discontiguous pages in physical memory.

Virtual memory

Physical memory

FIGURE 1-3 Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total virtual memory in use
by the running processes, the memory manager transfers, or pages, some of the memory contents
to disk. Paging data to disk frees physical memory so that it can be used for other processes or for
the operating system itself. When a thread accesses a virtual address that has been paged to disk,
the virtual memory manager loads the information back into memory from disk. Applications
don’t have to be altered in any way to take advantage of paging because hardware support enables
the memory manager to page without the knowledge or assistance of processes or threads.

The size of the virtual address space varies for each hardware platform. On 32-bit x86
systems, the total virtual address space has a theoretical maximum of 4 GB. By default, Windows
allocates half this address space (the lower half of the 4-GB virtual address space, from
x00000000 through x7FFFFFFF) to processes for their unique private storage and uses the other
half (the upper half, addresses x80000000 through xFFFFFFFF) for its own protected operating
system memory utilization. The mappings of the lower half change to reflect the virtual address
space of the currently executing process, but the mappings of the upper half always consist of the
operating system’s virtual memory. Windows Vista and Windows Server 2008 support boot-time
options (the increaseuserva qualifier in the Boot Configuration Database (BCD), described in
Chapter 13) that give processes running specially marked programs (the large address space aware
flag must be set in the header of the executable image) the ability to use up to 3 GB of private
address space (leaving 1 GB for the operating system).

This option allows applications such as database servers to keep larger portions of a database
in the process address space, thus reducing the need to map subset views of the database. Figure
1-4 shows the two virtual address space layouts supported by 32-bit Windows.

Default 3 GB User space

2 GB User 3 GB User
process space process space
2 GB System 1 GB System
space space

FIGURE 1-4 Address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very
large (multigigabyte) databases. To address this need on 32-bit systems, Windows provides a
mechanism called Address Windowing Extension (AWE), which allows a 32-bit application to
allocate up to 64 GB of physical memory and then map views, or windows, into its 2-GB virtual
address space. Although using AWE puts the burden of managing mappings of virtual to physical
memory on the programmer, it does address the need of being able to directly access more
physical memory than can be mapped at any one time in a 32-bit process address space.64-bit
Windows provides a much larger address space for processes: 7152 GB on [A-64 systems and
8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system address space
layouts. (For a detailed description, see Chapter 9.) Note that these sizes do not represent the
architectural limits for these platforms. Sixty-four bits of address space is over 17 billion GB, but
current 64-bit hardware limits this to smaller values. And Windows implementation limits in the
current versions of 64-bit Windows reduce this to 8192 GB (8 TB).

x64 lA-64
8192 GB 7152 GB
(8 TB) User (7 TB) User
process space process space
8192 GB 7152 GB
System space System space

FIGURE 1-5 Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including how address translation

works and how Windows manages physical memory, are described in Chapter 9.

16

1.2.5 Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying critical operating system data,
Windows uses two processor access modes (even if the processor on which Windows is running
supports more than two): user mode and kernel mode. User application code runs in user mode,
whereas operating system code (such as system services and device drivers) runs in kernel mode.
Kernel mode refers to a mode of execution in a processor that grants access to all system memory
and all CPU instructions. By providing the operating system software with a higher privilege level
than the application software has, the processor provides a necessary foundation for operating
system designers to ensure that a misbehaving application can’t disrupt the stability of the system
as a whole.

Note The architecture of the x86 and x64 processor defines four privilege levels, or rings, to
protect system code and data from being overwritten either inadvertently or maliciously by code
of lesser privilege. Windows uses privilege level 0 (or ring 0) for kernel mode and privilege level
3 (or ring 3) for user mode. The reason Windows uses only two levels is that some hardware
architectures that were supported in the past (such as Compaq Alpha and Silicon Graphics MIPS)
implemented only two privilege levels.

Although each Windows process has its own private memory space, the kernel-mode
operating system and device driver code share a single virtual address space. Each page in virtual
memory is tagged as to what access mode the processor must be in to read and/or write the page.
Pages in system space can be accessed only from kernel mode, whereas all pages in the user
address space are accessible from user mode. Read-only pages (such as those that contain static
data) are not writable from any mode. Additionally, on processors that support no-execute
memory protection, Windows marks pages containing data as nonexecutable, thus preventing

inadvertent code execution in data areas.

Thirty-two-bit Windows doesn’t provide any protection to private read/write system memory
being used by components running in kernel mode. In other words, once in kernel mode, operating
system and device driver code has complete access to system space memory and can bypass
Windows security to access objects. Because the bulk of the Windows operating system code runs
in kernel mode, it is vital that components that run in kernel mode be carefully designed and tested
to ensure that they don’t violate system security and cause system instability.

This lack of protection also emphasizes the need to take care when loading a third-party
device driver, because once in kernel mode the software has complete access to all operating
system data. This vulnerability was one of the reasons behind the driver-signing mechanism
introduced in Windows, which warns the user if an attempt is made to add an unauthorized
(unsigned) driver. (See Chapter 7 for more information on driver signing.) Also, a mechanism
called Driver Verifier helps device driver writers to find bugs (such as buffer overruns or memory
leaks) that can cause security or reliability issues. Driver Verifier is explained in Chapter 9.

Additionally, also on 64-bit versions of Windows, the kernel mode code signing (KMCS)
policy dictates that 64-bit device drivers must be signed with a cryptographic key assigned by one
of the major code certification authorities. Unlike 32-bit versions of Windows, the user cannot

17

explicitly force the installation of an unsigned driver, even as an administrator (unless this
restriction is disabled manually at boot time by pressing F8 and choosing the advanced boot

option Disable Driver Signature Enforcement).

As you’ll see in Chapter 2, user applications switch from user mode to kernel mode when
they make a system service call. For example, a Windows ReadFile function eventually needs to
call the internal Windows routine that actually handles reading data from a file. That routine,
because it accesses internal system data structures, must run in kernel mode. The transition from
user mode to kernel mode is accomplished by the use of a special processor instruction that causes
the processor to switch to kernel mode. The operating system traps this instruction, notices that a
system service is being requested, validates the arguments the thread passed to the system function,
and then executes the internal function. Before returning control to the user thread, the processor
mode is switched back to user mode. In this way, the operating system protects itself and its data

from perusal and modification by user processes.

Note A transition from user mode to kernel mode (and back) does not affect thread
scheduling per se—a mode transition is not a context switch. Further details on system service
dispatching are included in Chapter 3.

Thus, it’s normal for a user thread to spend part of its time executing in user mode and part in
kernel mode. In fact, because the bulk of the graphics and windowing system also runs in kernel
mode, graphics-intensive applications spend more of their time in kernel mode than in user mode.
An easy way to test this is to run a graphics-intensive application such as Microsoft Paint or
Microsoft Chess Titans and watch the time split between user mode and kernel mode using one of

the performance counters listed in Table 1-2.

TABLE 1-2 Mode-Related Pertormance Counters
Object: Counter Function

Processor: % Privileged Time ~ Percentage of time that an individual CPU (or all CPUs) has
run in kernel mode during a specified interval

Processor: % User Time Percentage of time that an individual CPU (or all CPUs) has
run in user mode during a specified interval

Process; % Privileged Time Percentage of time that the threads in a process have run in
kernel mode during a specified interval

Process: % User Time Percentage of time that the threads in a process have run in
user mode during a specified interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel mode
during a specified interval

Thread: % User Time Percentage of time that a thread has run in user mode dur-
ing a specified interval

EXPERIMENT: Kernel Mode vs. user Mode

18

You can use the Reliability and Performance Monitor to see how much time your system

spends executing in kernel mode vs. in user mode. Follow these steps:
1. Run the Reliability and Performance Monitor by opening the Start menu and selecting
Programs/Administrative Tools/Reliability and Performance Monitor. Choose the Performance

Monitor view.

2. Click the Add button (+) on the toolbar.
3. With the Processor performance object selected, click the % Privileged Time counter and,

while holding down the Ctrl key, click the % User Time counter.
4. Click Add, and then click Close.

5. Move the mouse rapidly back and forth. You should notice, similar to the illustration

below, the % Privileged Time line going up when you move the mouse around, reflecting the time
spent servicing the mouse interrupts and the time spent in the graphics part of the windowing

system (which, as explained in Chapter 2, runs primarily as a device driver in kernel mode).

6. When you’re finished, just close the tool.
You can also quickly see this activity by using Task Manager. Just click the Performance tab,

and then select Show Kernel Times from the View menu. The CPU usage bar will show total CPU

usage in green and kernel-mode time in red.

@ File Action View Favorites Window Help [_[#]x]
| AT = | B
ﬂ'ﬁ:.ﬁlnhihh'dﬂd Performance FFF_'] 20, E} u j | R B ! TR H
4 g Mentonng Toals
B Ferormance WMonitor
B Aeliability Mon tor i
¢ o Data Collector Ssts
i iy Reports B0
ﬁn.
40
20
1 .l'
oA D
A5 P 10345 PM A6l PM 4632 PM
Lzt 0.78l fverage 13850 Mlnlrnuml 0.000
Maimum 15525 D'ura'ru:lnl 1:40
. Show Color Scele Counter [nstance FParent Object Computer
'; 13 o User Time _Teial Processor SUALEE-LAPT.. |

19

To see how the Reliability and Performance Monitor itself uses kernel time and user time, run

it again, but add the individual Process counters % User Time and % Privileged Time for every
process in the system:

1. If it’s not already running, run the Reliability and Performance Monitor again. (If it is
already running, start with a blank display by clicking the New Counter Set button on the toolbar.)

2. Click the Add button (+) on the toolbar.

3. Change the performance object to Process.

4. Select the % Privileged Time and % User Time counters.

5. Select all processes in the Instance box (except the Total process).
6. Click Add, and then click Close.

7. Move the mouse rapidly back and forth.

8. Press Ctrl+H to turn on highlighting mode. This highlights the currently selected counter
in black.

9. Scroll through the counters at the bottom of the display to identify the processes whose
threads were running when you moved the mouse, and note whether they were running in user

mode or kernel mode.

You should see the Reliability and Performance Monitor process (by looking in the Instance
column for the mmc process) kernel-mode and user-mode time go up when you move the mouse
because it is executing application code in user mode and calling Windows functions that run in
kernel mode. You’ll also notice kernel-mode thread ac tivity in a process named csrss when you
move the mouse. This activity occurs because the Windows subsystem’s kernel-mode raw input
thread, which handles keyboard and mouse input, is attached to this process. (See Chapter 2 for
more information about system threads.) Finally, the process named Idle that you see spending
nearly 100 percent of its time in kernel mode isn’t really a process—it’s a fake process used to
account for idle CPU cycles. As you can observe from the mode in which the threads in the Idle
process run, when Windows has nothing to do, it does it in kernel mode.

1.2.6 Terminal Services and Multiple Sessions

Terminal Services refers to the support in Windows for multiple interactive user sessions on a
single system. With Windows Terminal Services, a remote user can establish a session on another
machine, log in, and run applications on the server. The server transmits thegraphical user
interface to the client, and the client transmits the user’s input back to the server. (Similar to the X
Window System, Windows Vista and Windows Server 2008 permit running individual
applications on a server system with the display remoted to the client instead of remoting the
entire desktop.)

The first session is considered the services session, or session zero, and contains system
service—hosting processes (explained in further detail in Chapter 4). The first login session at the
physical console of the machine is session one, and additional sessions can be created through the

20

use of the remote desktop connection program (Mstsc.exe) or through the use of fast user
switching (described later).

Windows Vista permits a single remote user to connect to the machine, but if someone is
logged in at the console, the workstation is locked (that is, someone can be using the system either
locally or remotely, but not at the same time). Windows Vista Home Premium and Ultimate
editions allow one interactive session and up to four Media Center Extender sessions.

Windows Server 2008 supports two simultaneous remote connections. (This is to facilitate
remote management—for example, use of management tools that require being logged in to the
machine being managed.) Windows Server 2008 Standard and Datacenter editions can support
more than two sessions if appropriately licensed and configured as a terminal server.

Although Windows Vista editions other than Media Center do not support multiple remote
desktop connections, they do support multiple sessions created locally through a feature called fast
user switching. When a user chooses to disconnect their session instead of log off (for example, by
clicking Start, clicking Log Off, and choosing Switch User or by holding down the Windows key
and pressing L), the current session (that is, the processes running in that session and all the
session-wide data structures that describe the session) remains in the system and the system

returns to the main logon screen. If a new user logs in, a new session is created.

For applications that want to be aware of running in a terminal server session, there are a set
of Windows APIs for programmatically detecting that as well as for controlling various aspects of
Terminal Services. (See the Windows SDK for details.)

Chapter 2 describes briefly how sessions are created and has some experiments showing how
to view session information with various tools, including the kernel debugger. The “Object
Manager” section in Chapter 3 describes how the system namespace for objects is instantiated on
a per-session basis and how applications that need to be aware of other instances of themselves on
the same system can accomplish that. Finally, Chapter 9 covers how the memory manager sets

up and manages session-wide data.

1.2.7 Objects and Handles

In the Windows operating system, an object is a single, run-time instance of a statically
defined object type. An object type comprises a system-defined data type, functions that operate
on instances of the data type, and a set of object attributes. If you write Windows applications, you
might encounter process, thread, file, and event objects, to name just a few examples. These
objects are based on lower-level objects that Windows creates and manages.

In Windows, a process is an instance of the process object type, a file is an instance of the file

object type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An
object of type process, for example, would have attributes that include the process ID, a base
scheduling priority, and a pointer to an access token object. Object methods, the means for

21

manipulating objects, usually read or change the object attributes. For example, the open method
for a process would accept a process identifier as input and return a pointer to the object as output.

Note Although there is a parameter named ObjectAttributes that a caller supplies when
creating an object using either the Windows API or native object services, that parameter
shouldn’t be confused with the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data structure is that the
internal structure of an object is opaque. You must call an object service to get data out of an
object or to put data into it. You can’t directly read or change data inside an object. This difference
separates the underlying implementation of the object from code that merely uses it, a technique
that allows object implementations to be changed easily over time.

Objects, through the help of a kernel component called the object manager, provide a

convenient means for accomplishing the following four important operating system tasks:
m Providing human-readable names for system resources
m Sharing resources and data among processes
m Protecting resources from unauthorized access

m Reference tracking, which allows the system to know when an object is no longer in use so

that it can be automatically deallocated

Not all data structures in the Windows operating system are objects. Only data that needs to
be shared, protected, named, or made visible to user-mode programs (via system services) is
placed in objects. Structures used by only one component of the operating system to implement
internal functions are not objects. Objects and handles (references to an instance of an object) are
discussed in more detail in Chapter 3.

1.2.8 Security

Windows was designed from the start to be secure and to meet the requirements of various
formal government and industry security ratings, such as the Common Criteria for Information
Technology Security Evaluation (CCITSE) specification. Achieving a governmentapproved
security rating allows an operating system to compete in that arena. Of course, many of these

required capabilities are advantageous features for any multiuser system.

The core security capabilities of Windows include discretionary (need-to-know) and
mandatory integrity protection for all shareable system objects (such as files, directories, processes,
threads, and so forth), security auditing (for accountability of subjects, or users and the actions
they initiate), user authentication at logon, and the prevention of one user from accessing

uninitialized resources (such as free memory or disk space) that another user has deallocated.

Windows has three forms of access control over objects. The first form—discretionary access
control—is the protection mechanism that most people think of when they think of operating
system security. It’s the method by which owners of objects (such as files or printers) grant or
deny access to others. When users log in, they are given a set of security credentials, or a security

22

context. When they attempt to access objects, their security context is compared to the access
control list on the object they are trying to access to determine whether they have permission to
perform the requested operation.

Privileged access control is necessary for those times when discretionary access control isn’t
enough. It’s a method of ensuring that someone can get to protected objects if the owner isn’t
available. For example, if an employee leaves a company, the administrator needs a way to gain
access to files that might have been accessible only to that employee. In that case, under Windows,
the administrator can take ownership of the file so that you can manage its rights as necessary.

Finally, mandatory integrity control is required when an additional level of security control is
required to protect objects that are being accessed from within the same user account. It’s used
both to isolate Protected Mode Internet Explorer from a user’s configuration and to protect objects
created by an elevated administrator account from access by a nonelevated administrator account.
(See Chapter 6 for more information on User Account Control—UAC.)

Security pervades the interface of the Windows API. The Windows subsystem implements
object-based security in the same way the operating system does; the Windows subsystem protects
shared Windows objects from unauthorized access by placing Windows security descriptors on
them. The first time an application tries to access a shared object, the Windows subsystem verifies
the application’s right to do so. If the security check succeeds, the Windows subsystem allows the

application to proceed.

The Windows subsystem implements object security on a number of shared objects, some of
which were built on top of native Windows objects. The Windows objects include desktop objects,
window objects, menu objects, files, processes, threads, and several synchronization objects.

For a comprehensive description of Windows security, see Chapter 6.

1.2.9 Registry

If you’ve worked at all with Windows operating systems, you’ve probably heard about or
looked at the registry. You can’t talk much about Windows internals without referring to the
registry because it’s the system database that contains the information required to boot and
configure the system, systemwide software settings that control the operation of Windows, the
security database, and per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such as the current
hardware state of the system (what device drivers are loaded, the resources they are using, and so
on) as well as the Windows performance counters. The performance counters, which aren’t
actually “in” the registry, are accessed through the registry functions. See Chapter 4 for more on

how performance counter information is accessed from the registry.

Although many Windows users and administrators will never need to look directly into the
registry (because you can view or change most configuration settings with standard administrative
utilities), it is still a useful source of Windows internals information because it contains many
settings that affect system performance and behavior. (If you decide to directly change registry

23

settings, you must exercise extreme caution; any changes might adversely affect system
performance or, worse, cause the system to fail to boot successfully.) You’ll find references to
individual registry keys throughout this book as they pertain to the component being described.
Most registry keys referred to in this book are under HKEY LOCAL MACHINE, which we’ll
abbreviate throughout as HKLM.

For further information on the registry and its internal structure, see Chapter 4.

1.2.10 Unicode

Windows differs from most other operating systems in that most internal text strings are
stored and processed as 16-bit-wide Unicode characters. Unicode is an international character set
standard that defines unique 16-bit values for most of the world’s known character sets. (For more
information about Unicode, see www.unicode.org as well as the programming documentation in
the MSDN Library.)

Because many applications deal with 8-bit (single-byte) ANSI character strings, Windows
functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) andan
ANSI (narrow, 8-bit) version. The Windows 95, Windows 98, and Windows Millennium Edition
implementations of Windows don’t implement all the Unicode interfaces to all the Windows
functions, so applications designed to run on one of these operating systems as well as Windows
Vista and Windows Server 2008 typically use the narrow versions. If you call the narrow version
of a Windows function, input string parameters are converted to Unicode before being processed
by the system and output parameters are converted from Unicode to ANSI before being returned
to the application. Thus, if you have an older service or piece of code that you need to run on
Windows but this code is written using ANSI character text strings, Windows will convert the
ANSI characters into Unicode for its own use. However, Windows never converts the data inside
files—it’s up to the application to decide whether to store data as Unicode or as ANSI.

Regardless of language, all versions of Windows contain the same functions. Instead of
having separate language versions, Windows has a single worldwide binary so that a single
installation can support multiple languages (by adding various language packs). Applications can
also take advantage of Windows functions that allow single worldwide application binaries that
can support multiple languages.

1.3 Digging into Windows internals

Although much of the information in this book is based on reading the Windows source code
and talking to the developers, you don’t have to take everything on faith. Many details about the
internals of Windows can be exposed and demonstrated by using a variety of available tools, such
as those that come with Windows and the Windows debugging tools. These tool packages are

briefly described later in this section.

24

To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars
throughout the book that describe steps you can take to examine a particular aspect of Windows
internal behavior. (You already saw a few of these sections earlier in this chapter.)

We encourage you to try these experiments so that you can see in action many of the
internals topics described in this book.

Table 1-3 shows a list of the principal tools used in this book and where they come from.

1.3.1 Reliability and Performance Monitor

We’ll refer to the Reliability and Performance Monitor found in the Administrative Tools
folder on the Start menu (or via Control Panel) throughout this book; specifically, we’ll focus on
the Performance Monitor and Resource Monitor. The Performance Monitor has three functions:
system monitoring, viewing performance counter logs, and setting alerts (by using data collector
sets, which also contain performance counter logs and trace and configuration data). For
simplicity, when we refer to the Performance Monitor, we are referring to the System Monitor
function within the tool.

The Performance Monitor can provide more information about how your system is operating
than any other single utility. It includes hundreds of counters for various objects. For each major
topic described in this book, a table of the relevant Windows performance counters is included.

The Performance Monitor contains a brief description for each counter. To see the
descriptions, select a counter in the Add Counters window and select the Show Description check

box.

Although all the low-level system monitoring we’ll do in this book can be done with the
Performance Monitor, Windows Vista also includes a Resource Monitor utility that shows four
primary system resources: CPU, Disk, Network, and Memory. In their basic states, these resources
are displayed with the same level of information that you would find in Task Manager. However,

they also provide columns that can be expanded for more information.

25

TABLE 1-3 Tools for Viewing Windows Internals

Tool Image Name Origin
Startup Programs Viewer AUTORUNS Sysinternals
Access Check ACCESSCHK Sysinternals
Dependency Walker DEPENDS Windows SDK or
www.dependencywalker.com
DLL List LISTDLLS Sysinternals
Global Flags GFLAGS Debugging tools
Handle Viewer HANDLE Sysinternals
Kernel debuggers WINDBG, KD Debugging tools, Windows SDK
Logon Sessions LOGONSESSIONS Sysinternals
Object Viewer WINOBJ Sysinternals
Reliability and Performance Monitor ~ PERFMON.MSC Windows built-in tool
Pool Monitor POOLMON Windows Driver Kit
Process Explorer PROCEXP Sysinternals
Get SID tool PSGETSID Sysinternals
Process Monitor REGMON Sysinternals
Service Control SC Windows built-in tool
Task (Process) List TLIST Debugging tools
Task Manager TASKMGR Windows built-in tool

When expanded, the CPU column displays information about per-process CPU usage, just
like Task Manager. However, it adds a column for average CPU usage, which can give you a
better idea of which processes are most active. The Disk column, on the other hand, displays
per-fileinformation for I/Os in a way that makes it easy to identify the most accessed, written to,

or read from files on the system.

The Networking column displays the active network connections and which processes own
them, as well as how much data is going through them. This information makes it possible to see
background network activity that might be hard to detect otherwise. Finally, the Memory column
displays much of the same information that one can obtain with Task Manager, but it is organized

for the entire system.

26

Note that all the Windows performance counters are accessible programmatically. The
section “HKEY PERFORMANCE DATA” in Chapter 4 has a brief description of the
components involved in retrieving performance counters through the Windows API.

1.3.2 Kernel Debugging

Kernel debugging means examining internal kernel data structures and/or stepping through
functions in the kernel. It is a useful way to investigate Windows internals because you can
display internal system information not available through any other tools and get a clearer idea of

code flows within the kernel.

Kernel debugging can be performed with a variety of tools: the Debugging Tools for
Windows from Microsoft, LiveKD from Sysinternals, or Syser Debugger from www.sysersofft.
com . However, we’ll focus on the Windows debugging tools because they are the only supported
way to perform kernel debugging on Windows. Before describing these tools, let’s examine a set
of files that you’ll need in order to perform any type of kernel debugging.

Symbols for Kernel Debugging

Symbol files contain the names of functions and variables. They are generated by the linker
and used by debuggers to reference and display these names during a debug session. This
information is not usually stored in the binary image because it is not needed to execute the code.
This means that binaries are smaller and faster. However, this means that when debugging, you
must make sure that the debugger can access the symbol files that are associated with the images

you are referencing during a debugging session.

To use any of the kernel debugging tools to examine internal Windows kernel data structures
(such as the process list, thread blocks, loaded driver list, memory usage information, and so on),
you must have the correct symbol files for at least the kernel image, Ntoskrnl.exe. (The section
“Architecture Overview” in Chapter 2 explains more about this file.) Symbol table files must
match the version of the image they were taken from. For example, if you install a Windows
Service Pack or hot fix that updates the kernel, you must obtain the matching, updated symbol
files for at least the kernel image; otherwise, you’ll get a symbol error when you try to start the

kernel debugger.

While it is possible to download and install symbols for various versions of Windows,
updated symbols for hot fixes are not always available. The easiest solution to obtain the correct
version of symbols for debugging is to use the Microsoft on-demand symbol server by using a
special syntax for the symbol path that you specify in the debugger. For example, the following
symbol path causes the debugging tools to load required symbols from the Internet

symbol server and keep a local copy in the c:\symbols folder:

1. srv*c:\symbols*http://msdl _microsoft.com/download/symbols

For detailed instructions on how to use the symbol server, see the debugging tools help file or

the Web page www.microsoft.com/whdc/devtools/debugging/debugstart.mspx.

27

Debugging Tools for Windows

The Debugging Tools for Windows package contains advanced debugging tools used in this
book to explore Windows internals. You can find the latest 32-bit version at www.microsoft.com

/whdc/devtools/debugging/installx86.mspx and the latest 64-bit version at www.microsoft.com

whdc/devtools/debugging/install64bit.mspx. These tools can be used to debug user-mode

processes as well as the kernel. (See the following sidebar.)

Note The Debugging Tools for Windows are updated frequently and released independently
of Windows operating system versions, so check often for new versions.

USER-Mode Debugging

The debugging tools can also be used to attach to a user-mode process and examine and/or
change process memory. There are two options when attaching to a process:

m invasive Unless specified otherwise, when you attach to a running process, the
DebugActiveProcess Windows function is used to establish a connection between the debugger
and the debugee. This permits examining and/or changing process memory, setting breakpoints,
and performing other debugging functions. Windows allows you to stop debugging without killing
the target process, as long as the debugger is detached, not killed.

m Noninvasive With this option, the debugger simply opens the process with the
OpenProcess function. It does not attach to the process as a debugger.

This allows you to examine and/or change memory in the target process, but you cannot set

breakpoints.

You can also open user-mode process dump files with the debugging tools. User-mode dump
files are explained in Chapter 3 in the section on exception dispatching. There are two primary
variants of the Microsoft debuggers that can be used for kernel debugging: a command-line
version (Kd.exe) and a graphical user interface (GUI) version (Windbg.exe). Both provide the
same set of commands, so which you choose is a matter of personal preference. You can perform

three types of kernel debugging with these tools:

m Open a crash dump file created as a result of a Windows system crash. (See Chapter 14 for

more information on crash dumps.)

m Connect to a live, running system and examine the system state (or set breakpoints if
you’re debugging device driver code). This operation requires two computers—a target and a host.
The target is the system being debugged, and the host is the system running the debugger. The
target system can be either local (connected to the host via a null modem cable, an IEEE 1394
cable, or a USB 2.0 cable) or remote (connected to the host via a modem). The target system must
be booted in debugging mode (either by pressing F8 during the boot process and selecting
Debugging Mode or by adding the option with the BCDEdit tool). You can also connect through a
named pipe, which is useful when debugging through a virtual machine product such as Virtual
PC or VMWare, by exposing the guest operating system’s serial port as a named pipe device.

28

m Windows systems also allow you to connect to the local system and examine the system
state. This is called local kernel debugging. To initiate local kernel debugging with WinDbg, open
the File menu, choose Kernel Debug, click on the Local tab, and then click OK. The target system
must be booted in debugging mode, a side effect of which is that the Windows decoders for
protected content, such as MPEG2 DVD movies, will intentionally fault to prevent access to

content decryption keys. An example output screen is shown in Figure 1-6. Some kernel debugger
commands do not work when

used in local kernel debugging mode (such as creating a memory dump with the .dump
command—however, this can be done with LiveKD, described later in this section).

& Local kernel - WinDby:6.10.0003.232 %86 _|5| ﬂ

Fie FEdb \iew Debug inoow Hep

S iR BREERPR 00 DREEREREDDE|E N 4 m

10l

Command - Local kemnel - WinDbg:6.10.0003.232 %86

u
MicrosoltT (K) Windows Debugger verslon b, lU.UUUS. 252 Zoo ﬂ
Copyright () Microsoft Corporation. A11 rights reserved.

connected to Windows Server Z003/windows vista 3Pl 6001 %86 competible target at

dymbol search path is: srv'oilsymbols*http://msdl.microsofo.com/download/ symbols
Executable zearch path 1a:

Windows Berver Z008/Windews Viste 2Pl Kernel Vesrsion 6001 (8ervice Pack 1) MP (1 3
Eroduct: Server, sulte: Terminalderver DataCenter dinglsussrTs

Built by: 6001 18145, xBéfre.vistaspl gdr.0B0517-1412

Mazhine Nama:

Ker:neq base = 0x8160d000 PsLoadedModulelist = DxE1724c70

Debug session time: Thu Cot 23 12:58:14.446 2008 (gMT-7)

Syztem Uptime: O days 0:31:23.140

v
1| | _’|_

|lkd:- |

Ln0, ol 0 [sysozenones [proc aoo0 Thrdoomg [[0k [Caps [
FIGURE 1-6 Local kernel debugging

Once connected in kernel debugging mode, you can use one of the many debugger extension
commands (commands that begin with “!””) to display the contents of internal data structures such
as threads, processes, 1/0 request packets, and memory management information. Throughout this
book, the relevant kernel debugger commands and output are included as they apply to each topic
being discussed. An excellent companion reference is the Debugger.chm help file, contained in the
WinDbg installation folder, which documents all the kernel debugger functionality and extensions.
In addition, the dt (display type) command can format over 1,000 kernel structures because the

kernel symbol files for Windows contain type information that the debugger can use to format
structures.

EXPERIMENT: Displaying Type information for Kernel Structures

29

To display the list of kernel structures whose type information is included in the kernel

symbols, type dt nt! * in the kernel debugger. A sample partial output is shown below:

O A

Ikd> dtnt!_*

nt! LIST ENTRY

nt! LIST ENTRY

nt! IMAGE_NT_HEADERS

nt! IMAGE_FILE_HEADER

nt! IMAGE_OPTIONAL_HEADER
nt! IMAGE_NT_HEADERS

nt!_ LARGE_INTEGER

You can also use the dt command to search for specific structures by using its wildcard

lookup capability. For example, if you were looking for the structure name for an interrupt object,

type dt nt!_*interrupt*:

G > B P =

SO N I o o

[\ I NS N NS T NS R e e e e e
W N = O O 0 9 O i A W N —~ O

lkd> dt nt! *interrupt*

nt! KINTERRUPT

nt! KINTERRUPT _MODE

nt! KINTERRUPT POLARITY

nt! PCI HOTPLUG_SLOT INTERRUPT

Then, you can use dt to format a specific structure as shown below:

lkd> dt nt!_kinterrupt

nt! KINTERRUPT

+0x002 Size : Int2B

+0x004 InterruptListEntry : LIST ENTRY

+0x00c ServiceRoutine : Ptr32 unsigned char

+0x010 MessageServiceRoutine : Ptr32 unsigned char
+0x014 Messagelndex : Uint4B

+0x018 ServiceContext : Ptr32 Void

+0x01c SpinLock : Uint4B

. +0x020 TickCount : Uint4B

. 10x024 ActualLock : Ptr32 Uint4B

. +0x028 DispatchAddress : Ptr32 void

. +0x02c Vector : Uint4B

. +0x030 Irql : UChar

. +0x031 Synchronizelrql : UChar

. +0x032 FloatingSave : UChar

. +0x033 Connected : UChar

. +0x034 Number : Char

. +0x035 ShareVector : UChar

. 10x038 Mode : KINTERRUPT MODE
. +0x03c Polarity : KINTERRUPT POLARITY
. +0x040 ServiceCount : Uint4B

. +0x044 DispatchCount : Uint4B

30

24. +0x048 Rsvdl : Uint8B
25. +0x050 DispatchCode : [135] Uint4B

Note that dt does not show substructures (structures within structures) by default. To recurse
through substructures, use the —r switch. For example, using this switch to display the kernel
interrupt object shows the format of the LIST ENTRY structure stored at the InterruptListEntry
field:

lkd> dt nt! kinterrupt -r

nt! KINTERRUPT

+0x000 Type : Int2B

+0x002 Size : Int2B

+0x004 InterruptListEntry : LIST ENTRY
+0x000 Flink : Ptr32 LIST ENTRY
+0x000 Flink : Ptr32 LIST ENTRY
+0x004 Blink : Ptr32 LIST ENTRY
. 1t0x004 Blink : Ptr32 LIST ENTRY
10. +0x000 Flink : Ptr32 LIST ENTRY
11. +0x004 Blink : Ptr32 LIST ENTRY

O NG - =

The Debugging Tools for Windows help file also explains how to set up and use the kernel
debuggers. Additional details on using the kernel debuggers that are aimed primarily at device
driver writers can be found in the Windows Driver Kit documentation. There are also several
useful Knowledge Base articles on the kernel debugger. Search for “debugref” in the Windows

Knowledge Base (an online database of technical articles) on support.microsoft.com.

LiveKd Tool

LiveKd is a free tool from Sysinternals that allows you to use the standard Microsoft kernel
debuggers just described to examine the running system without booting the system in debugging
mode. This approach might be useful when kernel-level troubleshooting is required on a machine
that wasn’t booted in debugging mode—certain issues may be hard to reproduce reliably, so a
reboot with the debug option enabled may not reexhibit the error.

You run LiveKd just as you would WinDbg or Kd. LiveKd passes any command-line options
you specify to the debugger you select. By default, LiveKd runs the new command-line kernel
debugger (Kd). To run WinDbg, specify the —w switch. To see the help files for LiveKd switches,
specify the —? switch.

LiveKd presents a simulated crash dump file to the debugger, so you can perform any
operations in LiveKd that are supported on a crash dump. Because LiveKd is relying on physical
memory to back the simulated dump, the kernel debugger might run into situations in which data
structures are in the middle of being changed by the system and are inconsistent. Each time the
debugger is launched, it starts with a fresh view of the system state. If you want to refresh the
snapshot, quit the debugger (with the ¢ command), and LiveKd will ask you whether you want to
start it again. If the debugger enters a loop in printing output, press Ctrl+C to interrupt the output,

31

quit, and rerun it. If it hangs, press Ctrl+Break, which will terminate the debugger process and ask

you whether you want to run the debugger again.

1.3.3 Windows Software Development Kit

The Windows Software Development Kit (SDK) is available as part of the MSDN
subscription program or can be downloaded for free from www.msdn.microsoft.com. It contains
the documentation, C header files, and libraries necessary to compile and link Windows
applications. (Although Microsoft Visual C++ comes with a copy of these header files, the
versions contained in the Windows SDK always match the latest version of the Windows
operating systems, whereas the version that comes with Visual C++ might be an older version that
was current when Visual C++ was released.) From an internals perspective, items of interest in the
Windows SDK include the Windows API header files (\Program Files\Microsoft SDK\Include) as
well as some utilities (such as Pstat.exe and Vadump.exe). A few of these tools are also shipped as
sample source code in both the Windows SDK and the MSDN Library.

1.3.4 Windows Driver Kit

The Windows Driver Kit (WDK) is also available through the MSDN subscription program,
and just like the Windows SDK, it is available for free download. The Windows Driver Kit
documentation is included in the MSDN Library.

Although the WDK is aimed at device driver developers, it is an abundant source of
Windows internals information. For example, while Chapter 7 describes the I/O system
architecture, driver model, and basic device driver data structures, it does not describe the
individual kernel support functions in detail. The WDK documentation contains a comprehensive
description of all the Windows kernel support functions and mechanisms used by device drivers in
both a tutorial and reference form.

Besides including the documentation, the WDK contains header files (in particular, ntddk.h,
ntifs.h, and wdm.h) that define key internal data structures and constants as well as interfaces to
many internal system routines. These files are useful when exploring Windows internal data
structures with the kernel debugger because although the general layout and content of these
structures are shown in this book, detailed field-level descriptions (such as size and data types) are
not. A number of these data structures (such as object dispatcher headers, wait blocks, events,

mutants, semaphores, and so on) are, however, fully described in the WDK.

So if you want to dig into the I/O system and driver model beyond what is presented in this
book, read the WDK documentation (especially the Kernel-Mode Driver Architecture Design
Guide and Reference manuals). Another excellent source is Programming the Microsoft Windows
Driver Model, Second Edition by Walter Oney (Microsoft Press, 2002).

1.3.5 Sysinternals Tools

32

Many experiments in this book use freeware tools that you can download from Sysinternals.
Mark Russinovich, coauthor of this book, wrote most of these tools. The most popular tools
include Process Explorer and Process Monitor. Note that many of these utilities involve the

installation and execution of kernel-mode device drivers and thus require administrator privileges.

1.4 Conclusion

In this chapter, you’ve been introduced to the key Windows technical concepts and terms that
will be used throughout the book. You’ve also had a glimpse of the many useful tools available for
digging into Windows internals. Now we’re ready to begin our exploration of the internal design
of the system, beginning with an overall view of the system architecture and its key components.

33

2. System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re
ready to start our exploration of the internal design goals and structure of the Microsoft Windows
operating system. This chapter explains the overall architecture of the system—the key
components, how they interact with each other, and the context in which they run.

To provide a framework for understanding the internals of Windows, let’s first review the
requirements and goals that shaped the original design and specification of the system.

2.1 Requirements and Design Goals

The following requirements drove the specification of Windows NT back in 1989:

m Provide a true 32-bit, preemptive, reentrant, virtual memory operating system

m Run on multiple hardware architectures and platforms

m Run and scale well on symmetric multiprocessing systems

m Be a great distributed computing platform, both as a network client and as a server
m Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications

m Meet government requirements for POSIX 1003.1 compliance

m Meet government and industry requirements for operating system security

m Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these
requirements, the Windows NT design team adopted the following design goals at the beginning
of the project:

m Extensibility The code must be written to comfortably grow and change as market
requirements change.

m Portability The system must be able to run on multiple hardware architectures and must be

able to move with relative ease to new ones as market demands dictate.

m Reliability and robustness The system should protect itself from both internal malfunction
and external tampering. Applications should not be able to harm the operating system or other
applications.

m Compatibility Although Windows NT should extend existing technology, its user interface
and APIs should be compatible with older versions of Windows and with MS-DOS. It should also
interoperate well with other systems, such as UNIX, OS/2, and NetWare.

m Performance Within the constraints of the other design goals, the system should be as fast
and responsive as possible on each hardware platform.

34

As we explore the details of the internal structure and operation of Windows, you’ll see how
these original design goals and market requirements were woven successfully into the construction
of the system. But before we start that exploration, let’s examine the overall design model for
Windows and compare it with other modern operating systems.

2.2 Operating System Model

In most multiuser operating systems, applications are separated from the operating system
itself—the operating system kernel code runs in a privileged processor mode (referred to as kernel
mode in this book), with access to system data and to the hardware; application code runs in a
nonprivileged processor mode (called user mode), with a limited set of interfaces available,
limited access to system data, and no direct access to hardware. When a user-mode program calls
a system service, the processor traps the call and then switches the calling thread to kernel mode.
When the system service completes, the operating system switches the thread context back to user
mode and allows the caller to continue.

Windows is similar to most UNIX systems in that it’s a monolithic operating system in the
sense that the bulk of the operating system and device driver code shares the same kernelmode
protected memory space. This means that any operating system component or device driver can
potentially corrupt data being used by other operating system components.

Is Windows a Microkernel-Based System?

Although some claim it as such, Windows isn’t a microkernel-based operating system in the
classic definition of microkernels, where the principal operating system components (such as the
memory manager, process manager, and I/O manager) run as separate processes in their own
private address spaces, layered on a primitive set of services the microkernel provides. For
example, the Carnegie Mellon University Mach operating system, a contemporary example of a
microkernel architecture, implements a minimal kernel that comprises thread scheduling, message
passing, virtual memory, and device drivers. Everything else, including various APIs, file systems,
and networking, runs in user mode. However, commercial implementations of the Mach
microkernel operating system typically run at least all file system, networking, and memory
management code in kernel mode. The reason is simple: the pure microkernel design is

commercially impractical because it’s too inefficient.

Does the fact that so much of Windows runs in kernel mode mean that it’s more susceptible
to crashes than a true microkernel operating system? Not at all. Consider the following scenario.
Suppose the file system code of an operating system has a bug that causes it to crash from time to
time. In a traditional operating system, a bug in kernelmode code such as the memory manager or
the file system would likely crash the entire operating system. In a pure microkernel operating
system, such components run in user mode, so theoretically a bug would simply mean that the
component’s process exits. But in practical terms, the system would crash because recovering

from the failure of such a critical process would likely be impossible.

35

All these operating system components are, of course, fully protected from errant
applications because applications don’t have direct access to the code and data of the privileged
part of the operating system (although they can quickly call other kernel services). This protection
is one of the reasons that Windows has the reputation for being both robust and stable as an
application server and as a workstation platform yet fast and nimble from the perspective of core
operating system services, such as virtual memory management, file I/O, networking, and file and
print sharing. The kernel-mode components of Windows also embody basic object-oriented design
principles. For example, they don’t in general reach into one another’s data structures to access
information maintained by individual components. Instead, they use formal interfaces to pass

parameters and access and/or modify data structures.

Despite its pervasive use of objects to represent shared system resources, Windows is not an
object-oriented system in the strict sense. Most of the operating system code is written in C for
portability and because C development tools are widely available. C doesn’t directly support
object-oriented constructs such as dynamic binding of data types, polymorphic functions, or class
inheritance. Therefore, the C-based implementation of objects in Windows borrows from, but
doesn’t depend on, features of particular object-oriented languages.

2.3 Architecture Overview

With this brief overview of the design goals and packaging of Windows, let’s take a look at
the key system components that make up its architecture. A simplified version of this architecture
is shown in Figure 2-1. Keep in mind that this diagram is basic—it doesn’t show everything. (For

example, the networking components and the various types of device driver layering are not

shown.)
System . _
Su}‘ ort Service User Environment
it processes applications subsystems
processes

l

Subsystem DLLs

l User mode

Kernel mode

Executive Windowing
and graphics

Kernel Device drivers

Hardware abstraction layer (HAL)

FIGURE 2-1 Simplified Windows architecture
In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the

Windows operating system. The boxes above the line represent user-mode processes, and the

36

components below the line are kernel-mode operating system services. As mentioned in Chapter 1,
user-mode threads execute in a protected process address space (although while they are executing
in kernel mode, they have access to system space). Thus, system support processes, service
processes, user applications, and environment subsystems each have their own private process

address space.
The four basic types of user-mode processes are described as follows:

m Fixed (or hardwired) system support processes, such as the logon process and the Session
Manager, that are not Windows services. (That is, they are not started by the service control
manager. Chapter 4 describes services in detail.)

m Service processes that host Windows services, such as the Task Scheduler and Print
Spooler services. Services generally have the requirement that they run independently of user
logons. Many Windows server applications, such as Microsoft SQL Server and Microsoft

Exchange Server, also include components that run as services.

m User applications, which can be one of five types: Windows 32-bit, Windows 64-bit,
Windows 3.1 16-bit, MS-DOS 16-bit, or POSIX 32-bit.

m Environment subsystem server processes, which implement part of the support for the

operating system environment, or personality presented to the user and programmer.

Windows NT originally shipped with three environment subsystems: Windows, POSIX, and
0S/2. However, OS/2 last shipped with Windows 2000. Windows Vista Ultimate and Enterprise
include support for an enhanced POSIX subsystem called Subsystem for Unix-based Applications
(SUA).

In Figure 2-1, notice the “Subsystem DLLs” box below the “Service processes” and “User
applications” boxes. Under Windows, user applications don’t call the native Windows operating
system services directly; rather, they go through one or more subsystem dynamiclink libraries
(DLLs). The role of the subsystem DLLs is to translate a documented function into the appropriate
internal (and generally undocumented) native system service calls. This translation might or might
not involve sending a message to the environment subsystem process that is serving the user

application.
The kernel-mode components of Windows include the following:

m The Windows executive contains the base operating system services, such as memory
management, process and thread management, security, [/O, networking, and interprocess

communication.

m The Windows kernel consists of low-level operating system functions, such as thread
scheduling, interrupt and exception dispatching, and ultiprocessor synchronization. It also
provides a set of routines and basic objects that the rest of the executive uses to implement
higher-level constructs.

m Device drivers include both hardware device drivers, which translate user I/O function calls

into specific hardware device I/O requests, as well as file system and network drivers.

37

m The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, device
drivers, and the rest of the Windows executive from platform-specific hardware differences (such
as differences between motherboards).

m The windowing and graphics system implements the graphical user interface (GUI)
functions (better known as the Windows USER and GDI functions), such as dealing with windows,

user interface controls, and drawing.

Table 2-1 lists the file names of the core Windows operating system components. (You’ll
need to know these file names because we’ll be referring to some system files by name.) Each of
these components is covered in greater detail both later in this chapter and in the chapters that
follow.

TABLE 2-1 Core Windows System Files

File Name Components
Ntoskrnl.exe Executive and kernel
Ntkrnlpa.exe (32-bit systems only) Executive and kernel with support for Physical Address

Extension (PAE), which allows addressing of up to 64 GB of
physical memory

Hal.dll Hardware abstraction layer
Win32k.sys Kernel-mode part of the Windows subsystem
NtdILdll Internal support functions and system service dispatch

stubs to executive functions

Kernel32.dll, Advapi32.dll, User32dl, ~ Core Windows subsystem DLLs
Gdi32dll

Before we dig into the details of these system components, though, let’s examine how

Windows achieves portability across multiple hardware architectures.

2.3.1 Portability

Windows was designed to run on a variety of hardware architectures, including Intel-based
CISC systems as well as RISC systems. The initial release of Windows NT supported the x86 and
MIPS architectures. Support for the Digital Equipment Corporation (which was bought by
Compaq, which later merged with Hewlett-Packard) Alpha AXP was added shortly thereafter.
(Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode. During the
development of Windows 2000, a native 64-bit version was running on Alpha AXP, but this never
was released.) Support for a fourth processor architecture, the Motorola PowerPC, was added in
Windows NT 3.51. Because of changing market demands, however, support for the MIPS and
PowerPC architectures was dropped before development began on Windows 2000.

38

Later, Compaq withdrew support for the Alpha AXP architecture, resulting in Windows 2000
being supported only on the x86 architecture. Windows XP and Windows Server 2003 added
support for three 64-bit processor families: the Intel Itanium TA-64 family, the AMD64 family,
and the Intel 64-bit Extension Technology (EM64T) for x86 (which is compatible with the
AMDG64 architecture, although there are slight differences in instructions supported). The latter
two processor families are called 64-bit extended systems and in this book are referred to as x64.
(How Windows runs 32-bit applications on 64-bit Windows is explained in Chapter 3.)

Windows achieves portability across hardware architectures and platforms in two primary

ways:

m Windows has a layered design, with low-level portions of the system that are
processorarchitecture-specific or platform-specific isolated into separate modules so that upper
layers of the system can be shielded from the differences between architectures and among
hardware platforms. The two key components that provide operating system portability are the
kernel (contained in Ntoskrnl.exe) and the hardware abstraction layer (or HAL, contained in
Hal.dll). Both these components are described in more detail later in this chapter. Functions that
are architecture-specific (such as thread context switching and trap dispatching) are implemented
in the kernel. Functions that can differ among systems within the same architecture (for example,
different motherboards) are implemented in the HAL. The only other component with a
significant amount of architecture-specific code is the memory manager, but even that is a small

amount compared to the system as a whole.

m The vast majority of Windows is written in C, with some portions in C++. Assembly
language is used only for those parts of the operating system that need to communicate directly
with system hardware (such as the interrupt trap handler) or that are extremely
performance-sensitive (such as context switching). Assembly language code exists not only in the
kernel and the HAL but also in a few other places within the core operating system (such as the
routines that implement interlocked instructions as well as onemodule in the local procedure call

facility), in the kernel-mode part of the Windows

subsystem, and even in some user-mode libraries, such as the process startup code in Ntdll.dll
(a system library explained later in this chapter).

2.3.2 Symmetric Multiprocessing

Multitasking is the operating system technique for sharing a single processor among multiple
threads of execution. When a computer has more than one processor, however, it can execute
multiple threads simultaneously. Thus, whereas a multitasking operating system only appears to
execute multiple threads at the same time, a multiprocessing operating system actually does it,

executing one thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals for Windows was
that it had to run well on multiprocessor computer systems. Windows is a symmetric
multiprocessing (SMP) operating system. There is no master processor—the operating system as
well as user threads can be scheduled to run on any processor. Also, all the processors share just

39

one memory space. This model contrasts with asymmetric multiprocessing (ASMP), in which the
operating system typically selects one processor to execute operating system kernel code while
other processors run only user code. The differences in the two multiprocessing models are

illustrated in Figure 2-2.

Symmetric Asymmetric

Pracessor A Processor B Processor A Processor B
Operating User User

system thread thread

User User Operating User
thread thread system thread

User Operating User
thread system thread

IO devices /O devices

FIGURE 2-2 Symmetric vs. asymmetric multiprocessing

Windows Vista and Windows Server 2008 also support two modern types of multiprocessor
systems: hyperthreading and NUMA (non-uniform memory architecture). These are briefly
mentioned in the following paragraphs. (For a complete, detailed description of the scheduling

support for these systems, see the thread scheduling section in Chapter 5.)

Naturally, Windows also natively supports multicore systems—because these systems have
real physical cores (simply on the same package), the original SMP code in Windows treats them
as discrete processors, except for certain accounting and identification tasks (such as licensing,
described shortly) that distinguish between cores on the same processor and cores on different

sockets.

Hyperthreading is a technology introduced by Intel that provides many logical processors on
one physical processor. Each logical processor has its CPU state, but the execution engine and
onboard cache are shared. This permits one logical CPU to make progress while the other logical

CPUs are busy (such as performing interrupt processing work, which prevents threads from

40

running on that logical processor). The scheduling algorithms are enhanced to make optimal use
of multiprocessor hyperthreaded machines, such as by scheduling threads on an idle physical
processor versus choosing an idle logical processor on a physical processor whose other logical
processors are busy.

In NUMA systems, processors are grouped in smaller units called nodes. Each node has its
own processors and memory and is connected to the larger system through a cachecoherent
interconnect bus. Windows on a NUMA system still runs as an SMP system, in that all processors
have access to all memory—it’s just that node-local memory is faster to reference than memory
attached to other nodes. The system attempts to improve performance by scheduling threads on
processors that are in the same node as the memory being used. It attempts to satisfy
memory-allocation requests from within the node, but will allocate memory from other nodes if

necessary.

Although Windows was originally designed to support up to 32 processors, nothing inherent
in the multiprocessor design limits the number of processors to 32—that number is simply an
obvious and convenient limit because 32 processors can easily be represented as a bit mask using
a native 32-bit data type. In fact, the 64-bit versions of Windows support up to 64 processors,
because the native size of a word on a 64-bit machine is 64 bits. The actual number of supported
processors depends on the edition of Windows being used. (See Table 2-3.) This number is stored
in the system license policy file (\Windows\ServiceProfiles\NetworkService \AppData\Roaming
\Microsoft\SoftwareLicensing\tokens.dat) as a policy value called “Kernel-MaximumProcessors.”
(Keep in mind that tampering with that data is a violation of the software license and modifying
licensing policies to allow the use of more processors involves more than just changing this

value.)

As of Windows Vista and Windows Server 2008, there is a unified kernel regardless of
whether the system is a uniprocessor or multiprocessor machine. This change, compared to earlier
versions of Windows, which had separate kernels for each machine type, was made both because
the majority of systems currently sold include at least two cores and because the few

uniprocessor-only optimizations result in negligible performance improvement.

However, 32-bit versions of Windows still come in two flavors of the kernel, depending on
whether PAE is enabled and supported. Because no-execute memory support (known as NX on
AMD processors and XD on Intel processors) in today’s processors makes use of PAE structures,
most 32-bit systems use the PAE kernel. On 64-bit Windows systems there is no PAE kernel
(there isn’t a need for it), so there is only a single kernel image.

At installation time, the appropriate files are selected and copied to the local %SystemRoot%
directory. Table 2-2 shows the correspondence of installed file names to their original names on
the installation media.

41

TABLE 2-2 Internal System File Names

Name of PAE Version on Name of Non-PAE Version on
Type of File Distribution Media Distrbution Media
Kernel Ntkrpamp.exe Ntkrnlmp.exe
HAL Depends on system type (See the Depends on system type (See the
list of HALs in Table 2-5,) list of HALs in Table 2-5.)

The rest of the system files that make up Windows (including all utilities, libraries, and device
drivers) have the same version on all types of systems (that is, they handle multiprocessor
synchronization and PAE issues correctly). You should use this approach on any software you
build, whether it is a Windows application or a device driver—keep multiprocessor
synchronization issues in mind when you design your software, and test the software on
both uniprocessor and multiprocessor systems. For legacy applications, Windows implements a
number of flags to provide backward compatibility. For example, applications need to be
specifically made “large address aware” for PAE support, and they can also set a “uniprocessor
only” field in their image if they break on SMP systems.

EXPERIMENT: Checking Which Ntoskrnl Version You’re Running

Windows has no utility to show which version of Ntoskrnl you are running. However, an
Event Log entry is written each time the system boots that does record the type of kernel image
that loaded (multiprocessor and free vs. checked), as shown in the following screen shot. (From
the Start menu, select Programs/Administrative Tools/Event Viewer, select Windows
Logs/System, and then double-click an Event Log entry with an Event ID of 6009, indicating the

entry was written at the system start.)

4

| [2] Bvent Praperties - Bvent 6009, Eventlog

bicrosoft (B Windows () 6.00, 8001 Service Pack 1 Multiprocessor Free,

[«) (=]

Log Marne: Jystern

Source: Eventlog Logged: 81472008 2:14:54 Pr4
EventID: 6009 Task Categary: Mone

Lewel: Infarmation Keywords: Classic

User: RS Caornputer: Blex-Laptop
OpCode:

fore Information: Ewent Log Online Help

This Event Log entry doesn’t indicate whether you booted the PAE version of the kernel image
that supports more than 4 GB of physical memory (Ntkrnlpa.exe). However, you can tell if you
booted the PAE kernel by looking at the registry value HKLM\SYSTEM
\CurrentControlSet\Control\SessionManager\MemoryManagement\Physical AddressExtension.
You can also determine which version of the kernel you’re running by using WinDbg and opening
a local kernel debugging session. Be sure you have the symbols loaded (enter the .reload
command), and then type the “list module” command to list details for the kernel image (nt): Im

mv nt. The output below shows a PAE multiprocessor kernel, as you can tell by the name.

Ikd> Im vm nt

start end module name

82000000 823a1000 nt (pdb symbols)
c:\programming\symbols\ntkrpamp.pdb\7018E534BO6E4A5BB6C63F6F2AA80207
2\ntkrpamp.pdb

A W N P

Loaded symbol image file: ntkrpamp.exe
Image path: ntkrpamp.exe

Timestamp: Tue Oct 09 21:46:20 2007 (470C2EEC)
CheckSum: 00366023
ImageSize: 003A1000

10. File version: 6.0.6000.20697

11. Product version: 6.0.6000.20697

12. File flags: 0 (Mask 3F)

4

5

6. Image name: ntkrpamp.exe
7

8

9

43

13. File 0S: 40004 NT Win32

14. File type: 1.0 App

15. File date: 00000000.00000000

16. Translations: 0409.04b0

17. CompanyName: Microsoft Corporation

18. ProductName: Microsoft® Windows® Operating System
19. InternalName: ntkrpamp.exe

20. OriginalFilename: ntkrpamp.exe

21. ProductVersion: 6.0.6000.20697

22_. FileVersion: 6.0.6000.20697 (vista_ldr.071009-1543)
23. FileDescription: NT Kernel & System

24_ LegalCopyright: © Microsoft Corporation. All rights reserved.

2.3.3 Scalability

One of the key issues with multiprocessor systems is scalability. To run correctly on an SMP
system, operating system code must adhere to strict guidelines and rules. Resource contention and
other performance issues are more complicated in multiprocessing systems than in uniprocessor
systems and must be accounted for in the system’s design. Windows incorporates several features

that are crucial to its success as a multiprocessor operating system:

m The ability to run operating system code on any available processor and on multiple

processors at the same time

m Multiple threads of execution within a single process, each of which can execute
simultaneously on different processors

m Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks, and
pushlocks, described in Chapter 3) as well as within device drivers and server processes, which
allows more components to run concurrently on multiple processors

m Programming mechanisms such as I/O completion ports (described in Chapter 7) that
facilitate the efficient implementation of multithreaded server processes that can scale well on

multiprocessor systems

The scalability of the Windows kernel has evolved over time. For example, Windows Server
2003 has per-CPU scheduling queues, which permit thread scheduling decisions to occur in
parallel on multiple processors. Multiprocessor thread scheduling details are covered in Chapter 5.
Further details on multiprocessor synchronization can be found in Chapter 3.

2.3.4 Differences Between Client and Server Versions

Windows ships in both client and server retail packages. There are six client versions of
Windows Vista: Windows Vista Home Basic, Windows Vista Home Premium, Windows Vista

Business, Windows Vista Ultimate, Windows Vista Enterprise, and Windows Vista Starter.

44

There are five main variants of Windows Server 2008: Windows Web Server 2008, Windows
Server 2008 Standard, Windows Server 2008 Enterprise, Windows Server 2008 Datacenter, and
Windows Server 2008 for Itanium-Based Systems.

Additionally, there are “N” versions of the client that do not include Windows Media Player.
Finally, the Standard, Enterprise, and Datacenter editions of Windows Server 2008 also include
“without Hyper-V” editions, which do not include Hyper-V. (Hyper-V virtualization is discussed
in Chapter 3).

These versions differ by:
m The number of processors supported (in terms of physical packages, not cores)
m The amount of physical memory supported

m The number of concurrent network connections supported (For example, a maximum of 10

concurrent connections are allowed to the file and print services in the client version.)
m Support for Tablet PC and/or Media Center Edition

m Support for features such as BitLocker, DVD burning, Windows Fax and Scan, Backup,

and more than 100 other configurable licensing policy values

m Layered services that come with Windows Server editions that don’t come with the client
editions (for example, directory services and clustering)

Table 2-3 lists the differences in memory and processor support for Windows Vista and
Windows Server 2008. For a detailed comparison chart of the different editions of Windows
Server 2008, see www.microsoft.com/windowsserver2008/en/us/compare-specs.aspx.

45

TABLE 2-3 Differences Between Windows Vista and Windows Server 2008

Windows Vista
Starter Edition

Windows Vista
Home Basic
Edition

Windows Vista
Home Premium

Windows Vista
Business

Windows Vista
Enterprise

Windows Vista
Ultimate

Windows Web
Server 2008

Windows Server
2008 Standard
Edition
Windows Server
2008 Enterprise
Edition
Windows Server
2008 Datacenter
Edition
Windows

Server 2008 for

[tanium-Based
Systems

Number of
Processors
Supported
(32-Bit
Edition)

1

32

Not available

Physical
Memory

Supported

(32-Bit
Edition)
4 GB

4 GB

4GB

4GB

4GB

4GB

4GB

4GB

32GB

64 GB

Not available

46

Number of
Processors
Supported
(64-Bit
Edition)

Not available

64

64

Physical
Memory
Supported
(Itanium
Editions)
Not available

Not available

Not available
Not available
Not available
Not available

Not available

Not available

Not available

2043 GB

2048 GB

Physical
Memory
Supported
(x64
Editions)
Not available

8GB

16 GB

128 GB
128 GB
128 GB

32GB

32 GB

2048 GB

2048 GB

Not available

Although there are several client and server retail packages of the Windows operating system,
they share a common set of core system files, including the kernel image, Ntoskrnl.exe (and the
PAE version, Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system utilities
and DLLs. Starting with Windows Vista SP1, these files are identical for all editions of Windows.

Note Because Windows Vista shipped about a year before Windows Server 2008, there was a
short period during which the two operating systems had different kernels (development on
Windows Server 2008 was continuing on an updated version of the Vista kernel). As Windows
Vista SP1 was being developed, the kernels for the two editions were synced up, and both
Windows Vista SP1 and Windows Server 2008 launched together, unifying the kernels for the

first time since Windows 2000.

With so many different versions of Windows, but with each having the same kernel image,
how does the system know which edition is booted? By querying the registry values ProductType
and ProductSuite under the HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key.
ProductType is used to distinguish whether the system is a client system or a server system (of any
flavor). The valid values are listed in Table 2-4. The result is stored in the system global variable
MmProductType, which can be queried from a device driver using the kernel-mode support
function MmlIsThisAnNtAsSystem, documented in the Windows Driver Kit (WDK). These values
are loaded into the registry based on the licensing policy file described earlier.

TABLE 2-4 ProductType Registry Values

Edition of Windows Value of ProductType
Windows Vista WinNT

Windows Server 2008 (domain controller) LanmanNT

Windows Server 2008 (server anly) ServerNT

A different registry value, ProductPolicy, contains a cached copy of the data inside the
tokens.dat file, which differentiates between the editions of Windows and the features that they
enable. If user programs need to determine which edition of Windows is running, they can call the
Windows VerifyVersionlnfo function, documented in the Windows Software Development Kit
(SDK). Device drivers can call the kernel-mode function RtlGetVersion, documented in the
WDK.

So if the core files are essentially the same for the client and server versions, how do the
systems differ in operation? In short, server systems are by default optimized for system
throughput as high-performance application servers, whereas the client version, although it has
server capabilities, is optimized for response time for interactive desktop use. For example, based
on the product type, several resource allocation decisions are made differently at system boot time,
such as the size and number of operating system heaps (or pools), the number of internal system
worker threads, and the size of the system data cache. Also, runtime policy decisions, such as the
way the memory manager trades off system and process memory demands, differ between the
server and client editions. Even some thread scheduling details have different default behavior in
the two families (the default length of the time slice, or thread quantum—see Chapter 5 for

47

details). Where there are significant operational differences in the two products, these are
highlighted in the pertinent chapters throughout the rest of this book. Unless otherwise noted,
everything in this book applies to both the client and server versions.

EXPERIMENT: Determining Features enabled by licensing Policy

As mentioned earlier, Windows supports more than 100 different features that can be enabled
through the software licensing mechanism. These policy settings determine the various differences
not only between a client Windows installation (such as Windows Vista) and a server installation
(such as Windows Server 2008) but also between each edition (or SKU) of the operating system,
such as enabling BitLocker support on Ultimate and Enterprise editions of Vista. You can use the
SIPolicy tool available from Winsider Seminars & Solutions (www.winsiderss.com/tools

/slpolicy.htm) to display these policy values on your machine.

Policy settings are organized by a facility, which represents the owner module for which the
policy applies. You can display a list of all facilities on your system by running Slpolicy.exe with
the —f switch:

SIPolicy v1.01 - Show Software Licensing Policies
Copyright (C) 2008 Alex lonescu
www.alex-ionescu.com

Software Licensing Facilities:

Kernel

Licensing and Activation

N~ o o0~ 0N P

Core

You can then add the name of any facility after the switch to display the policy value for that
facility. For example, to look at the limitations on CPUs and available memory, use the Kernel
facility. Here’s the expected output on a machine running Windows Vista Ultimate:

C:\>SlPolicy.exe -f Kernel

Slpolicy v1.01 - Show Software Licensing Policies
Copyright (C) 2008 Alex lonescu

www . alex-ionescu.com

Kernel

Processor Limit: 2

Maximum Memory Allowed (x86): 4096 MB

Maximum Memory Allowed (x64): 131072 MB

Maximum Memory Allowed (1A64): 131072 MB

Maximum Physical Page: 4096

© 0 N o 0o b~ W N PP

e
= O

2.3.5 Checked Build

There is a special debug version of Windows called the checked build (available only with an
MSDN Professional or higher subscription). It is a recompilation of the Windows source code

48

with a compile-time flag defined called “DBG” (to cause compile time conditional debugging and
tracing code to be included). Also, to make it easier to understand the machine code, the
post-processing of the Windows binaries to optimize code layout for faster execution is not
performed. (See the section “Performance-Optimized Code” in the Debugging Tools for Windows
help file.)

The checked build is provided primarily to aid device driver developers because it performs
more stringent error checking on kernel-mode functions called by device drivers or other system
code. For example, if a driver (or some other piece of kernel-mode code) makes an invalid call to
a system function that is checking parameters (such as acquiring a spinlock at the wrong interrupt
level), the system will stop execution when the problem is detected rather than allow some data
structure to be corrupted and the system to possibly crash at a later time.

EXPERIMENT: Determining If You Are Running the Checked Build

There is no built-in tool to display whether you are running the checked build or the retail
build (called the free build). However, this information is available through the “Debug” property
of the Windows Management Instrumentation (WMI) Win32 OperatingSystem class. The
following sample Visual Basic script displays this property:

1. strComputer = ™.
2. Set objWMIService = GetObject(winmgmts:™ _ &

3. "{impersonationLevel=impersonate}!\\" & strComputer &
"\root\cimv2™)

4. Set colOperatingSystems = objWMIService.ExecQuery _

5. ('SELECT * FROM Win32_OperatingSystem')

6. For Each objOperatingSystem in colOperatingSystems

7. Wscript.Echo "Caption: " & objOperatingSystem.Caption

8. Wscript.Echo "Debug: "™ & objOperatingSystem.Debug

9. Wscript.Echo "Version: " & objOperatingSystem.Version

10. Next

To try this, type in the preceding script and save it as file. The following is the output from
running the script:

1. C:\>cscript osversion.vbs

2. Microsoft (R) Windows Script Host Version 5.7

3. Copyright (C) Microsoft Corporation. All rights reserved.

4. Caption: Microsoft Windows Vista

5. Debug: False

6. Version: 6.0.6000

This system is not running the checked build, as the Debug flag shown here says False. Much of
the additional code in the checked-build binaries is a result of using the ASSERT macro, which is
defined in the WDK header file Ntddk.h and documented in the WDK documentation. This macro
tests a condition (such as the validity of a data structure or parameter), and if the expression
evaluates to FALSE, the macro calls the kernel-mode function RtlAssert, which calls DbgPrintEx
to send the text of the debug message to a debug message buffer. If a kernel debugger is attached,
this message is displayed automatically followed by a prompt asking the user what to do about the

49

assertion failure (breakpoint, ignore, terminate process, or terminate thread). If the system wasn’t
booted with the kernel debugger (using the debug option in the Boot Configuration Database—
BCD) and no kernel debugger is currently attached, failure of an ASSERT test will bugcheck the
system. For a list of ASSERT checks made by some of the kernel support routines, see the section
“Checked Build ASSERTs” in the WDK documentation.

The checked build is also useful for system administrators because of the additional detailed
informational tracing that can be enabled for certain components. (For detailed instructions, see
the Microsoft Knowledge Base Article number 314743, titled HOWTO: Enable Verbose Debug
Tracing in Various Drivers and Subsystems.) This information output is sent to an internal debug
message buffer using the DbgPrintEx function referred to earlier. To view the debug messages,
you can either attach a kernel debugger to the target system (which requires booting the target
system in debugging mode), use the !dbgprint command while performing local kernel debugging,

or use the Dbgview.exe tool from Windows Sysinternals (www.microsoft.com/technet/

sysinternals).

You don’t have to install the entire checked build to take advantage of the debug version of
the operating system. You can just copy the checked version of the kernel image (Ntoskrnl.exe)
and the appropriate HAL (Hal.dll) to a normal retail installation. The advantage of this approach is
that device drivers and other kernel code get the rigorous checking of the checked build without

having to run the slower debug versions of all components in the system.

For detailed instructions on how to do this, see the section “Installing Just the Checked
Operating System and HAL” in the WDK documentation. Finally, the checked build can also be
useful for testing user-mode code only because the timing of the system is different. (This is
because of the additional checking taking place within the kernel and the fact that the components
are compiled without optimizations.) Often, multithreaded synchronization bugs are related to
specific timing conditions. By running your tests on a system running the checked build (or at
least the checked kernel and HAL), the fact that the timing of the whole system is different might

cause latent timing bugs to surface that do not occur on a normal retail system.

2.4 Key System Components

Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the
internal structure and the role each key operating system component plays. Figure 2-3 is a more
detailed and complete diagram of the core Windows system architecture and components than was
shown earlier in the chapter (in Figure 2-1). Note that it still does not show all components
(networking in particular, which is explained in Chapter 12).

The following sections elaborate on each major element of this diagram. Chapter 3 explains
the primary control mechanisms the system uses (such as the object manager, interrupts, and so
forth). Chapter 13 describes the process of starting and shutting down Windows, and Chapter 4
details management mechanisms such as the registry, service processes, and Windows
Management Instrumentation. Then the remaining chapters explore in even more detail the

internal structure and operation of key areas such as processes and threads, memory management,

50

security, the I/O manager, storage management, the cache manager, the Windows file system
(NTFS), and networking.

System Processes

Session
manager

Leoszal session)) . .
manager Services A pplications Environment
Service control Subsystems
marager SRS I
Local Security ERGCE e Task Managsr H Winckorws
Aurthority — B
i orer
Winlogon Erint spoolar P = Tl
- Ly
Wininit -1 Windows DilLs applicaticn Wincows DLLs |
Windows DLLs Subsystem DLLs
| MTOLLDLL |

Lser mode

Eem=l mods

System
threads

| , !

Syrstem Servics Dispatcher

(Kemel mode callable interfacas)
Windows
[FE
= £ e LISER,
oo s o | ge |28 32|35 |22 |28 | 38| @
Cievice = 2 5o = 2 55_‘?9 Eg -] 2= Eiﬁ_ﬁ
and file B & E & o Efﬁ.f': 'E-E o E == 4 _
SWSTET ® i TE |5 ol Rl T o= w 2 Gra phics
drivers i G e drivers

Kemel

Hardbwrare abstraction layer (HAL)

Hardwar interfaces (buses, 'O devices, intermu pts,
imterval timers, DA, mamory cache control, etc)

FIGURE 2-3 Windows architecure

2.4.1 Environment Subsystems and Subsystem DLLs

Although the basic POSIX subsystem that originally shipped with Windows no longer ships
with the system, a greatly enhanced version is available on Windows Vista Ultimate and
Enterprise editions, called Subsystem for Unix-based Applications (SUA [POSIX]), shown in
Figure 2-3.

As we’ll explain shortly, the Windows subsystem is special in that Windows can’t run
without it. (It owns the keyboard, mouse, and display, and it is required to be present even on
server systems with no interactive users logged in.) In fact, the other two subsystems are
configured to start on demand, whereas the Windows subsystem must always be running. The

subsystem startup information is stored under the registry key HKLM\SYSTEM\

51

CurrentControlSet\Control\Session Manager\SubSystems. Figure 2-4 shows the values under
this key.

| 2 AregistryEcitar == e
Ble Bt Mew Fywartes Help
SarACe it & || M Tpes [nka
SendreGmapOider | Dafauks | FEA_Z mnmins
SaracePraudar (e -

*¥| lehug FEG_EX PO 5T

ablkrcde FEG_ENPRND ST \DpstemPoctifyshendTisdn) sps

snproml FEG_MULTLE Pouis

T FEG_EXPAND 5T #SnbamPBeaf natam33ipran e

*FRequred FEG_MULTIEE Debug Windoas

b findiss FEG_EXPAKD 5T S5t mPoafiupstem Bhoirin ee DigectDeechang=Windres ThaedZechon=1024,12., |

o Terdon Manager
Appompstache
Corfigumtion ksnagsr
DOS Deviced
Ervew paiment
Exacutn
FileRin am e rt iR
LD Bysteim
Femsl
EndrardilLs L]
Tty oty stz it
Pawer
Cuata Syatern

- o e ml
CRIE
WRA
v -

Coevgiter HEEY LOC 0L WOCHINELEYETE R U entC ot il 19 cetnod\ 5e sann Mena gert SubSeiemil

FIGURE 2-4 Registry Editor showing Windows startup information

The Required value lists the subsystems that load when the system boots. The value has two
strings: Windows and Debug. The Windows value contains the file specification of the Windows
subsystem, Csrss.exe, which stands for Client/Server Run-Time Subsystem. (See the Note later in
this section.) Debug is blank (because it’s used for internal testing) and therefore does nothing.
The Optional value indicates that the POSIX subsystem will be started on demand. The registry
value Kmode contains the file name of the kernel-mode portion of the Windows subsystem,

Win32k.sys (explained later in this chapter).

The role of an environment subsystem is to expose some subset of the base Windows
executive system services to application programs. Each subsystem can provide access to different
subsets of the native services in Windows. That means that some things can be done from an
application built on one subsystem that can’t be done by an application built on another subsystem.
For example, a Windows application can’t use the POSIX fork function.

Each executable image (.exe) is bound to one and only one subsystem. When an image is run,
the process creation code examines the subsystem type code in the image header so that it can
notify the proper subsystem of the new process. This type code is specified with the
/SUBSYSTEM qualifier of the link command in Microsoft Visual C++.

Note As a historical note, the reason the Windows subsystem process is called Csrss.exe is
that in the original design of Windows NT, all the subsystems were going to execute as threads
inside a single systemwide environment subsystem process. When the POSIX and OS/2
subsystems were removed and put in their own processes, the file name for the Windows
subsystem process wasn’t changed.

As mentioned earlier, user applications don’t call Windows system services directly. Instead,
they go through one or more subsystem DLLs. These libraries export the documented interface
that the programs linked to that subsystem can call. For example, the Windows subsystem DLLs
(such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) implement the Windows API
functions. The POSIX subsystem DLL (Psxdll.dll) implements the POSIX API functions.

52

EXPERIMENT: Viewing the Image Subsystem Type

You can see the image subsystem type by using the Dependency Walker tool (Depends.exe)
in the Windows SDK. For example, notice the image types for two different Windows images,
Notepad.exe (the simple text editor) and Cmd.exe (the Windows command prompt):

T e =]
BE Fir [de Vew Dpoons: Podle %ndoe Hep I .rl.;
EEHARa=E AT 8anE®REMW

Maduk File Tevee Farp | Link Time Twmp | FikeSee | anr | ik Checksum | Aesl Ghecksum
MESTHT.OLL (L8 D0EE 125 [IR/ DR0E 1 Al kB OAF REE k) D OAFRAE
NOTERAD ESE D1/ 00E 1T DUAL N 1 K 0 ENIOINGET BOIOZEGED

HTOLLOLL LT 10y | G110 T80 13 Xy EeMB13SCEE BORLESCEE
OLEX DL [Pl P [T O WV P o] [e 1Y 115 3% (BT R FETFEN] [ETFRERT-E1]
DLEAJTIIOLL | DLCLAS IR0 183y | 0178200 13 LIIDEFAGT OIS FAG]
18 | P

Oooen ¢

Fid Help, piessFL

R = ——
o o r——
é’ﬁep&?ﬁu‘w%-hnﬁ’ﬂﬂ [ﬁ
WE Fie fde Wew Dprons Profle Wndoe Hep | o |
= A T =R = e Sk =L
* | mioduis | File Teme %tamp I Link TimeStamp | Fileee | &r | Link Checloum | Aed Checloom | G [Submpkern | =
w] I AL IR0 1533 | 0100 130T I kII0C1181 k11021181 4 Conacls |
[=R CHD. OSLY IR0 L33 ALY R0 103 JLEATE: & Bl EDSOEF S b B 0SA0F 5
O [KERKELIZIAL [TR R T R TR BIIOERCA] EIOEECE]
3 | MmucAT.OLL 00718/ 006 12 e | 01/18/3008 1330) B 1 DOF BAE B 1 DAF BAE
B | vmoLLoLL | marnaseee 1a3es | 01rasaee 1o | LR RERT] [BT] ! 2
i

Fer Help, praasF1

This shows that Notepad is a GUI program, while Cmd is a console, or character-based,
program. And although this implies there are two different subsystems for GUI and
character-based programs, there is just one Windows subsystem, and GUI programs can have
consoles, just like console programs can display GUIs.

When an application calls a function in a subsystem DLL, one of three things can occur:

m The function is entirely implemented in user mode inside the subsystem DLL. In other
words, no message is sent to the environment subsystem process, and no Windows executive
system services are called. The function is performed in user mode, and the results are returned to
the caller. Examples of such functions include GetCurrentProcess (which always returns —1, a
value that is defined to refer to the current process in all process-related functions) and
GetCurrentProcessld. (The process ID doesn’t change for a running process, so this ID is retrieved
from a cached location, thus avoiding the need to call into the kernel.)

m The function requires one or more calls to the Windows executive. For example, the
Windows ReadFile and WriteFile functions involve calling the underlying internal (and
undocumented) Windows I/O system services NtReadFile and NtWriteFile, respectively.

m The function requires some work to be done in the environment subsystem process. (The
environment subsystem processes, running in user mode, are responsible for maintaining the state
of the client applications running under their control.) In this case, a client/server request is made
to the environment subsystem via a message sent to the subsystem to perform some operation. The
subsystem DLL then waits for a reply before returning to the caller.

Some functions can be a combination of the second and third items just listed, such as the
Windows CreateProcess and CreateThread functions.

53

Although Windows was designed to support multiple, independent environment subsystems,
from a practical perspective, having each subsystem implement all the code to handle windowing
and display I/O would result in a large amount of duplication of system functions that, ultimately,
would have negatively affected both system size and performance. Because Windows was the
primary subsystem, the Windows designers decided to locate these basic functions there and have
the other subsystems call on the Windows subsystem to perform display I/O. Thus, the POSIX
subsystem calls services in the Windows subsystem to perform display I/O. (In fact, if you
examine the subsystem type for these images, you’ll see that they are Windows executables.)

Let’s take a closer look at each of the environment subsystems.

Windows Subsystem

The Windows subsystem consists of the following major components:

m The environment subsystem process (Csrss.exe) loads three DLLs (Basesrv.dll, Winsrv.dll,

and Csrsrv.dll) that contain support for:
[d Console (text) windows
[d Creating and deleting processes and threads
[d Portions of the support for 16-bit virtual DOS machine (VDM) processes
[d Side-by-Side (SxS)/Fusion and manifest support
[d Other miscellaneous functions, such as GetTempFile, DefineDosDevice,
ExitWindowsEXx, and several natural language support functions
m The kernel-mode device driver (Win32k.sys) contains:

[d The window manager, which controls window displays; manages screen output; collects

input from keyboard, mouse, and other devices; and passes user messages to applications.

[d The Graphics Device Interface (GDI), which is a library of functions for graphics output

devices. It includes functions for line, text, and figure drawing and for graphics manipulation.
4 Wrappers for DirectX support that is implemented in another kernel driver (Dxgkrnl.sys).

m Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) translate
documented Windows API functions into the appropriate and mostly undocumented kernel-mode

system service calls to Ntoskrnl.exe and Win32k.sys.

m Graphics device drivers are hardware-dependent graphics display drivers, printer drivers,

and video miniport drivers.

Applications call the standard USER functions to create user interface controls, such as
windows and buttons, on the display. The window manager communicates these requests to the
GDI, which passes them to the graphics device drivers, where they are formatted for the display
device. A display driver is paired with a video miniport driver to complete video display support.

54

The GDI provides a set of standard two-dimensional functions that let applications
communicate with graphics devices without knowing anything about the devices. GDI functions
mediate between applications and graphics devices such as display drivers and printer drivers. The
GDI interprets application requests for graphic output and sends the requests to graphics display
drivers. It also provides a standard interface for applications to use varying graphics output
devices. This interface enables application code to be independent of the hardware devices and
their drivers. The GDI tailors its messages to the capabilities of the device, often dividing the
request into manageable parts. For example, some devices can understand directions to draw an
ellipse; others require the GDI to interpret the command as a series of pixels placed at certain
coordinates. For more information about the graphics and video driver architecture, see the
“Design Guide” section of the “Display (Adapters and Monitors)’chapter in the Windows Driver
Kit.

Prior to Windows NT 4, the window manager and graphics services were part of the
usermode Windows subsystem process. In Windows NT 4, the bulk of the windowing and
graphics code was moved from running in the context of the Windows subsystem process to a set
of callable services running in kernel mode (in the file Win32k.sys). The primary reason for this
shift was to improve overall system performance. Having a separate server process that contains
the Windows graphics subsystem required multiple thread and process context switches, which
consumed considerable CPU cycles and memory resources even though the original design was
highly optimized.

For example, for each thread on the client side there was a dedicated, paired server thread in
the Windows subsystem process waiting on the client thread for requests. A special interprocess
communication facility called fast LPC was used to send messages between these threads. Unlike
normal thread context switches, transitions between paired threads via fast LPC don’t cause a
rescheduling event in the kernel, thereby enabling the server thread to run for the remaining time
slice of the client thread before having to take its turn in the kernel’s preemptive thread scheduler.
Moreover, shared memory buffers were used to allow fast passing of large data structures, such as
bitmaps, and clients had direct but read-only access to key server data structures to minimize the
need for thread/process transitions between clients and the Windows server. Also, GDI operations
were (and still are) batched. Batching means that a series of graphics calls by a Windows
application aren’t “pushed” over to the server and drawn on the output device until a GDI batching
queue is filled. You can set the size of the queue by using the Windows GdiSetBatchLimit
function, and you can flush the queue at any time with GdiFlush. Conversely, read-only properties
and data structures of GDI, once they were obtained from the Windows subsystem process, were
cached on the client side for fast subsequent access.

Despite these optimizations, however, the overall system performance was still not adequate
for graphics-intensive applications. The obvious solution was to eliminate the need for the
additional threads and resulting context switches by moving the windowing and graphics system
into kernel mode. Also, once applications have called into the window manager and the GDI,
those subsystems can access other Windows executive components directly without the cost of
user-mode or kernel-mode transitions. This direct access is especially important in the case of the
GDI calling through video drivers, a process that involves interaction with video hardware at high

frequencies and high bandwidths.

55

So, what remains in the user-mode process part of the Windows subsystem? All the drawing
and updating for console or text windows are handled by it because console applications have no
notion of repainting a window. It’s easy to see this activity—simply open a command prompt and
drag another window over it, and you’ll see the Windows subsystem consuming CPU time as it
repaints the console window. But other than console window support, only a few Windows
functions result in sending a message to the Windows subsystem process anymore: process and
thread creation and termination, network drive letter mapping, and creation of temporary files. In
general, a running Windows application won’t be causing many, if any, context switches to the

Windows subsystem process.

POSIX Subsystem

POSIX, an acronym loosely defined as “a portable operating system interface based on
UNIX,” refers to a collection of international standards for UNIX-style operating system
interfaces. The POSIX standards encourage vendors implementing UNIX-style interfaces to make
them compatible so that programmers can move their applications easily from one system to

another.

Windows initially implemented only one of the many POSIX standards, POSIX.1, formally
known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990. This standard was
included primarily to meet U.S. government procurement requirements set in the mid-tolate 1980s
that mandated POSIX.1 compliance as specified in Federal Information Processing Standard
(FIPS) 151-2, developed by the National Institute of Standards and Technology.

Windows NT 3.5, 3.51, and 4 were formally tested and certified according to FIPS 151-2.
Because POSIX.1 compliance was a mandatory goal for Windows, the operating system was
designed to ensure that the required base system support was present to allow for the
implementation of a POSIX.1 subsystem (such as the fork function, which is implemented in the
Windows executive, and the support for hard file links in the Windows file system). Windows
Vista and Windows Server 2008 provide the Windows Subsystem for Unix-based Applications
(SUA), which includes an enhanced POSIX subsystem environment that provides nearly 2,000
UNIX functions and 300 UNIX-like tools and utilities. (See http://technet.microsoft.com/en-us
/library/cc779522.aspx for more information on SUA.) SUA can be enabled on any Windows

Server 2008 machine, as well as Windows Vista Ultimate and Enterprise editions.

This enhanced POSIX subsystem assists in porting UNIX applications to Windows because it
also supports the POSIX.2 standard, which adds many APIs (such as the pthread API) and
libraries to the bare set that POSIX.1 defined. Additionally, it also adds support for 64-bit binaries
and, most importantly, mixed-mode support, meaning that for the first time UNIXbased
applications can call Windows APIs alongside POSIX APIs, greatly alleviating the task of porting
the application.

EXPERIMENT: Watching the POSIX Subsystem Start

56

The POSIX subsystem is configured by default to start the first time a POSIX executable is
run, so you can watch it start by running a POSIX program, such as one of the POSIX utilities that
comes with SUA. Follow these steps to watch the POSIX subsystem start:

1. Start a command prompt.

2. Run Process Explorer and check that the POSIX subsystem isn’t already running (that is,
that there’s no Psxss.exe process on the system). Make sure Process Explorer is displaying the
process list in tree view (by pressing Ctrl+T).

3. Run a POSIX program, such as the C Shell or Korn Shell included with the SUA.

4. Go back to Process Explorer and notice the new Psxss.exe process that is a child of
Smss.exe (which, depending on your different highlight duration, might still be highlighted as a
new process on the display).

To compile and link a POSIX application in Windows requires the POSIX headers and
libraries from the Windows SDK. POSIX executables are linked against the POSIX subsystem
library, Psxdll.dll. Because by default Windows is configured to start the POSIX subsystem on
demand, the first time you run a POSIX application, the POSIX subsystem process (Psxss.exe)
must be started. It remains running until the system reboots. (If you kill the POSIX subsystem
process, you won’t be able to run more POSIX applications until you reboot.) The POSIX image
itself isn’t run directly—instead, a special support image called Posix.exe is launched, which in
turn creates a child process to run the POSIX application.

For more information on how Windows handles running POSIX applications, see the section
“Flow of CreateProcess” in Chapter 5.

2.4.2 Ntdil.dll

Ntdll.dIl is a special system support library primarily for the use of subsystem DLLs. It
contains two types of functions:

mSystem service dispatch stubs to Windows executive system services
mInternal support functions used by subsystems, subsystem DLLs, and other native images

The first group of functions provides the interface to the Windows executive system services
that can be called from user mode. There are more than 400 such functions, such as NtCreateFile,
NtSetEvent, and so on. As noted earlier, most of the capabilities of these functions are accessible
through the Windows API. (A number are not, however, and are for use within the operating
system.)

For each of these functions, Ntdll contains an entry point with the same name. The code
inside the function contains the architecture-specific instruction that causes a transition into kernel
mode to invoke the system service dispatcher (explained in more detail in Chapter 3), which, after
verifying some parameters, calls the actual kernel-mode system service that contains the real code
inside Ntoskrnl.exe. Ntdll also contains many support functions, such as the image loader
(functions that start with Ldr), the heap manager, and Windows subsystem process communication

57

functions (functions that start with Csr). Ntdll also contains general run-time library routines
(functions that start with Rtl), support for user-mode debugging (functions that start with DbgUi)
and Event Tracing for Windows (functions starting in Etw), and the user-mode asynchronous
procedure call (APC) dispatcher and exception dispatcher. (APCs and exceptions are explained in
Chapter 3.) Finally, you’ll find a small subset of the C Run-Time (CRT) routines, limited to those
routines that are part of the string and standard libraries (such as memcpy, strcpy, itoa, and so on).

2.4.3 Executive

The Windows executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower layer.)

The executive includes the following types of functions:

m Functions that are exported and callable from user mode. These functions are called system
services and are exported via Ntdll. Most of the services are accessible through the Windows API
or the APIs of another environment subsystem. A few services, however, aren’t available through
any documented subsystem function. (Examples include LPCs and various query functions such
as NtQueryInformationProcess, specialized functions such as NtCreatePagingFile, and so on.)

m Device driver functions that are called through the use of the DeviceloControl function.
This provides a general interface from user mode to kernel mode to call functions in device drivers

that are not associated with a read or write.

m Functions that can be called only from kernel mode that are exported and are documented
in the WDK.

m Functions that are exported and callable from kernel mode but are not documented in the
WDK (such as the functions called by the boot video driver, which start with Inbv).

m Functions that are defined as global symbols but are not exported. These include internal
support functions called within Ntoskrnl, such as those that start with lop (internal I/O manager
support functions) or Mi (internal memory management support functions).

m Functions that are internal to a module that are not defined as global symbols. The
executive contains the following major components, each of which is covered in detail in a

subsequent chapter of this book:

m The configuration manager (explained in Chapter 4) is responsible for implementing and
managing the system registry.

m The process and thread manager (explained in Chapter 5) creates and terminates processes
and threads. The underlying support for processes and threads is implemented in the Windows

kernel; the executive adds additional semantics and functions to these lower-level objects.

m The security reference monitor (or SRM, described in Chapter 6) enforces security policies
on the local computer. It guards operating system resources, performing run-time object protection
and auditing.

m The /O manager (explained in Chapter 7) implements device-independent I/O and is
responsible for dispatching to the appropriate device drivers for further processing.

58

m The Plug and Play (PnP) manager (explained in Chapter 7) determines which drivers are
required to support a particular device and loads those drivers. It retrieves the hardware resource
requirements for each device during enumeration. Based on the resource requirements of each
device, the PnP manager assigns the appropriate hardware resources such as I/O ports, IRQs,
DMA channels, and memory locations. It is also responsible for sending proper event notification
for device changes (addition or removal of a device) on the system.

m The power manager (explained in Chapter 7) coordinates power events and generates
power management I/O notifications to device drivers. When the system is idle, the power
manager can be configured to reduce power consumption by putting the CPU to sleep. Changes in
power consumption by individual devices are handled by device drivers but are coordinated by the

power manager.

m The Windows Driver Model Windows Management Instrumentation routines (explained in
Chapter 4) enable device drivers to publish performance and configuration information and
receive commands from the user-mode WMI service. Consumers of WMI information can be on
the local machine or remote across the network.

m The cache manager (explained in Chapter 10) improves the performance of file-based 1/0
by causing recently referenced disk data to reside in main memory for quick access (and by
deferring disk writes by holding the updates in memory for a short time before sending them to the
disk). As you’ll see, it does this by using the memory manager’s support for mapped files.

m The memory manager (explained in Chapter 9) implements virtual memory, a memory
management scheme that provides a large, private address space for each process that can exceed
available physical memory. The memory manager also provides the underlying support for the

cache manager.

m The logical prefetcher and Superfetch (explained in Chapter 9) accelerate system and
process startup by optimizing the loading of data referenced during the startup of the system or a
process. In addition, the executive contains four main groups of support functions that are used by
the executive components just listed. About a third of these support functions are documented in
the WDK because device drivers also use them. These are the four categories of support functions:

m The object manager, which creates, manages, and deletes Windows executive objects nd
abstract data types that are used to represent operating system resources such s processes, threads,
and the various synchronization objects. The object manager is xplained in Chapter 3.

m The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a
lient process and a server process on the same computer. Among other things, ALPC is sed as a
local transport for remote procedure call (RPC), an industry-standard communication acility for

client and server processes across a network.

m A broad set of common run-time library functions, such as string processing, arithmetic

perations, data type conversion, and security structure processing.

m Executive support routines, such as system memory allocation (paged and nonpaged ool),
interlocked memory access, as well as three special types of synchronization bjects: resources, fast

59

mutexes, and pushlocks. The executive also contains a variety of other infrastructure routines,
some of which we will only mention briefly throughout the book:

m The kernel debugger library, which allows debugging of the kernel from a debugger
supporting KD, a portable protocol supported over a variety of transports (such as USB and I[EEE
1394) and implemented by WinDbg and the Kd.exe utilities.

m The user-mode debugging framework, which is responsible for sending events to the
user-mode debugging API and allowing breakpoints and stepping through code to work, as well as
for changing contexts of running threads.

m The kernel transaction manager, which provides a common, two-phase commit mechanism

to resource managers, such as the transactional registry (TxR) and transactional NTFS (TxF).

m The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides kernel
support for the virtual machine environment and optimizes certain parts of the code when the

system knows it’s running in a client partition (virtual environment).

m The errata manager provides workarounds for nonstandard or noncompliant hardware

devices.
m The Driver Verifier implements optional integrity checks of kernel-mode drivers and code.

m Event Tracing for Windows provides helper routines for systemwide event tracing for

kernel-mode and user-mode components.

m The Windows diagnostic infrastructure enables intelligent tracing of system activity based

on diagnostic scenarios.

m The Windows hardware error architecture support routines provide a common framework

for reporting hardware errors.
m The file-system runtime library provides common support routines for file system drivers.

m The Windows Driver Model Windows Management Instrumentation routines (explained in
Chapter 4) enable device drivers to publish performance and configuration information and
receive commands from the user-mode WMI service. Consumers of WMI information can be on
the local machine or remote across the network.

m The cache manager (explained in Chapter 10) improves the performance of file-based 1I/0 by
causing recently referenced disk data to reside in main memory for quick access (and by deferring
disk writes by holding the updates in memory for a short time before sending them to the disk). As
you’ll see, it does this by using the memory manager’s support for mapped files.

m The memory manager (explained in Chapter 9) implements virtual memory, a memory
management scheme that provides a large, private address space for each process that can exceed
available physical memory. The memory manager also provides the underlying support for the
cache manager.

m The logical prefetcher and Superfetch (explained in Chapter 9) accelerate system and process
startup by optimizing the loading of data referenced during the startup of the system or a process.
In addition, the executive contains four main groups of support functions that are used by the

executive components just listed. About a third of these support functions are documented in the

60

WDK because device drivers also use them. These are the four categories of support functions:

m The object manager, which creates, manages, and deletes Windows executive objects nd
abstract data types that are used to represent operating system resources such s processes, threads,
and the various synchronization objects. The object manager is xplained in Chapter 3.

m The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a lient
process and a server process on the same computer. Among other things, ALPC is sed as a local
transport for remote procedure call (RPC), an industry-standard communication acility for client
and server processes across a network.

m A broad set of common run-time library functions, such as string processing, arithmetic
perations, data type conversion, and security structure processing.

m Executive support routines, such as system memory allocation (paged and nonpaged ool),
interlocked memory access, as well as three special types of synchronization bjects: resources, fast
mutexes, and pushlocks. The executive also contains a variety of other infrastructure routines,
some of which we will only mention briefly throughout the book:

m The kernel debugger library, which allows debugging of the kernel from a debugger supporting
KD, a portable protocol supported over a variety of transports (such as USB and IEEE 1394) and
implemented by WinDbg and the Kd.exe utilities.

m The user-mode debugging framework, which is responsible for sending events to the user-mode
debugging API and allowing breakpoints and stepping through code to work, as well as for
changing contexts of running threads.

m The kernel transaction manager, which provides a common, two-phase commit mechanism to
resource managers, such as the transactional registry (TxR) and transactional NTFS (TxF).

m The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides kernel
support for the virtual machine environment and optimizes certain parts of the code when the
system knows it’s running in a client partition (virtual environment).

m The errata manager provides workarounds for nonstandard or noncompliant hardware devices.

m The Driver Verifier implements optional integrity checks of kernel-mode drivers and code.

m Event Tracing for Windows provides helper routines for systemwide event tracing for
kernel-mode and user-mode components.

m The Windows diagnostic infrastructure enables intelligent tracing of system activity based on
diagnostic scenarios.

m The Windows hardware error architecture support routines provide a common framework for
reporting hardware errors.

m The file-system runtime library provides common support routines for file system drivers.

2.4.4 Kernel

The kernel consists of a set of functions in Ntoskrnl.exe that provide fundamental
mechanisms (such as thread scheduling and synchronization services) used by the executive
components, as well as low-level hardware architecture—dependent support (such as interrupt and
exception dispatching), that is different on each processor architecture. The kernel code is written
primarily in C, with assembly code reserved for those tasks that require access to specialized

processor instructions and registers not easily accessible from C.

61

Like the various executive support functions mentioned in the preceding section, a number of
functions in the kernel are documented in the WDK (and can be found by searching for functions
beginning with Ke) because they are needed to implement device drivers.

Kernel Objects

The kernel provides a low-level base of well-defined, predictable operating system primitives
and mechanisms that allow higher-level components of the executive to do what they need to do.
The kernel separates itself from the rest of the executive by implementing operating system
mechanisms and avoiding policy making. It leaves nearly all policy decisions to the executive,
with the exception of thread scheduling and dispatching, which the kernel implements.

Outside the kernel, the executive represents threads and other shareable resources as objects.
These objects require some policy overhead, such as object handles to manipulate them, security
checks to protect them, and resource quotas to be deducted when they are created. This overhead
is eliminated in the kernel, which implements a set of simpler objects, called kernel objects, that
help the kernel control central processing and support the creation of executive objects. Most
executive-level objects encapsulate one or more kernel objects, incorporating their kernel-defined

attributes.

One set of kernel objects, called control objects, establishes semantics for controlling various
operating system functions. This set includes the APC object, the deferred procedure call (DPC)
object, and several objects the I/O manager uses, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates synchronization
capabilities that alter or affect thread scheduling. The dispatcher objects include the kernel thread,
mutex (called mutant internally), event, kernel event pair, semaphore, timer, and waitable timer.
The executive uses kernel functions to create instances of kernel objects, to manipulate them, and
to construct the more complex objects it provides to user mode. Objects are explained in more
detail in Chapter 3, and processes and threads are described in Chapter 5.

Kernel Processor Control Region and Control Block (KPCR and KPRCB)

The kernel uses a data structure called the processor control region, or KPCR, to store
processor-specific data. The KPCR contains basic information such as the processor’s interrupt
table (IDT), task-state segment (TSS), and global descriptor table (GDT). It also includes the
interrupt controller state, which it shares with other modules, such as the ACPI driver and the
HAL. To provide easy access to the KPCR, the kernel stores a pointer to it in the fs register on
32-bit Windows and in the gs register on an x64 Windows system. On [A64 systems, the KPCR is
always located at 0xe0000000ffff0000.

The KPCR also contains an embedded data structure called the kernel processor control
block (KPRCB). Unlike the KPCR, which is documented for third-party drivers and other internal
Windows kernel components, the KPRCB is a private structure used only by the kernel code in
Ntoskrnl.exe. It contains scheduling information such as the current, next, and idle threads
scheduled for execution on the processor, the dispatcher database for the processor (which
includes the ready queues for each priority level), the DPC queue, CPU vendor and identifier
information (model, stepping, speed, feature bits), CPU and NUMA topology (node information,

62

cores per package, logical processors per core, and so on), cache sizes, time accounting
information (such as the DPC and interrupt time), and more. The KPRCB also contains all the
statistics for the processor, such as I/O statistics, cache manager statistics (see Chapter 10 for a
description of these), DPC statistics, and memory manager statistics (see Chapter 9 for more
information). Finally, the KPRCB is sometimes used to store cache-aligned, per-processor
structures to optimize memory access, especially on NUMA systems. For example, the nonpaged
and paged-pool system lookaside lists are stored in the KPRCB.

EXPERIMENT: Viewing the KPCR and KPRCB

You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel
debugger commands. If you don’t include flags, the debugger will display information for CPU 0
by default; otherwise, you can specify a CPU by adding its number after the command (for
example, !pcr 2). The following example shows what the output of the !pcr and !prch commands
looks like. If the system had pending DPCs, those would also be shown.

1. 1kd> !pcr

2. KPCR for Processor 0 at 81d09800:
3. Major 1 Minor 1

4. NtTib_.ExceptionList: 9b3lca3c

5. NtTib.StackBase: 00000000

6. NtTib.StackLimit: 00000000

7. NtTib.SubSystemTib: 80150000

8. NtTib.Version: 1c47209e

9. NtTib.UserPointer: 00000001

10. NtTib.SelfTib: 7FfFfde000

11. SelfPcr: 81d09800

12. Prcb: 81d09920

13. Irgl: 00000002

14. IRR: 00000000

15. IDR: FFFFFfff

16. InterruptMode: 00000000

17. IDT: 82fh8400

18. GDT: 82fb8000

19. TSS: 80150000

20. CurrentThread: 86d317e8

21. NextThread: 00000000

22. IdleThread: 81d0d640

23. DpcQueue:

24. Ikd> Iprcb

25. PRCB for Processor 0 at 81d09920:
26. Current IRQL -- O

27 . Threads-- Current 86d317e8 Next 00000000 Idle 81d0d640
28. Number O SetMember 1

29. Interrupt Count -- 294ccce0

63

30. Times -- Dpc 0002a87F Interrupt 00010b87
31. Kernel 026270al User 00140e5e

You can use the dt command to directly dump the KPCR and KPRCB data structures because
both debugger commands give you the address of the structure (shown in bold for clarity in the
previous output). For example, if you wanted to determine the speed of the processor, you could
look at the MHz field with the following command.

1. Ikd> dt _KPRCB 81d09920 MHz

2. nt!_KPRCB

3. +0x3c4 MHz : Oxbb4

4. 1kd> ? bb4

5. Evaluate expression: 2996 = 00000bb4

On this machine, the processor was running at about 3GHz.

2.4.5 Hardware Abstraction Layer

The other major job of the kernel is to abstract or isolate the executive and device drivers
from variations between the hardware architectures supported by Windows. This job includes
handling variations in functions such as interrupt handling, exception dispatching, and

multiprocessor synchronization.

Even for these hardware-related functions, the design of the kernel attempts to maximize the
amount of common code. The kernel supports a set of interfaces that are portable and semantically
identical across architectures. Most of the code that implements these portable interfaces is also

identical across architectures.

Some of these interfaces are implemented differently on different architectures, however, or
some of the interfaces are partially implemented with architecture-specific code. These
architecturally independent interfaces can be called on any machine, and the semantics of the
interface will be the same whether or not the code varies by architecture. Some kernel interfaces
(such as spinlock routines, which are described in Chapter 3) are actually implemented in the HAL
(described in the next section) because their implementation can vary for systems within the same

architecture family.

The kernel also contains a small amount of code with x86-specific interfaces needed to
support old MS-DOS programs. These x86 interfaces aren’t portable in the sense that they can’t be
called on a machine based on any other architecture; they won’t be present. This x86-specific code,
for example, supports calls to manipulate global descriptor tables (GDTs) and local descriptor
tables (LDTs), hardware features of the x86.

Other examples of architecture-specific code in the kernel include the interfaces to provide
translation buffer and CPU cache support. This support requires different code for the different

architectures because of the way caches are implemented.

Another example is context switching. Although at a high level the same algorithm is used
for thread selection and context switching (the context of the previous thread is saved, the context
of the new thread is loaded, and the new thread is started), there are architectural differences

64

among the implementations on different processors. Because the context is described by the
processor state (registers and so on), what is saved and loaded varies depending on the

architecture.

Hardware Abstraction Layer

As mentioned at the beginning of this chapter, one of the crucial elements of the Windows
design is its portability across a variety of hardware platforms. The hardware abstraction layer
(HAL) is a key part of making this portability possible. The HAL is a loadable kernel-mode
module (Hal.dll) that provides the low-level interface to the hardware platform on which Windows
is running. It hides hardware-dependent details such as I/O interfaces, interrupt controllers, and
multiprocessor communication mechanisms—any functions that are both architecture-specific and

machine-dependent.

So rather than access hardware directly, Windows internal components as well as
user-written device drivers maintain portability by calling the HAL routines when they need
platform dependent information. For this reason, the HAL routines are documented in the WDK.
To find out more about the HAL and its use by device drivers, refer to the WDK.

Although several HALs are included with Windows (as shown in Table 2-5), Windows Vista
and Windows Server 2008 have the ability to detect at boot-up time which HAL should be used,
eliminating the problem that existed on earlier versions of Windows when attempting to boot a
Windows installation on a different kind of system.

TABLE 2-5 List of x86 HALs

HAL File Name Systems Supported

Halacpi.dll Advanced Configuration and Power Interface (ACPI) PCs. Implies uniprocessor-
only machine, without APIC support (the presence of either one would make
the system use the HAL below instead).

Halmacpidll Advanced Programmable Interrupt Controller (APIC) PCs with an ACPI. The
existence of an APIC implies SMP support.

Note On x64 machines, there is only one HAL image, called Hal.dll. This results from all x64
machines having the same motherboard configuration, since the processors require ACPI and
APIC support. Therefore, there is no need to support machines without ACPI or with a standard
PIC.

EXPERIMENT: Determining Which HAI You’re Running

You can determine which version of the HAL you’re running by using WinDbg and opening
a local kernel debugging session. Be sure you have the symbols loaded (write .reload) and then

type Im mv hal. For example, the following output is from a system running the ACPI HAL:

1. 1kd> Im vm hal
2. start end module name

65

w

823a1000 823d5000 hal (pdb symbols)
c:\programming\symbols\halmacpi . pdb\OD335CFD77384CE695E1748F3
249184B1\halmacpi .pdb

5. Loaded symbol image file: halmacpi.dll

6. Image path: halmacpi.dll

7. Image name: halmacpi.dll
8

9

N

Timestamp: Sat Dec 23 23:05:34 2006 (458DFC8E)

- CheckSum: 00035DC3
10. ImageSize: 00034000
11. File version: 6.0.6000.16407
12. Product version: 6.0.6000.16407
13. File flags: 0 (Mask 3F)
14_File 0S: 40004 NT Win32
15. File type: 2.0 DIl
16. File date: 00000000.00000000
17. Translations: 0409.04b0
18. CompanyName: Microsoft Corporation
19. ProductName: Microsoft® Windows® Operating System
20. InternalName: halmacpi.dll
21.OriginalFilename: halmacpi.dll
22 . ProductVersion: 6.0.6000.16407
23. FileVersion: 6.0.6000.16407 (vista_gdr.061223-1640)
24 _ FileDescription: Hardware Abstraction Layer DLL
25. LegalCopyright: © Microsoft Corporation. All rights reserved.
EXPERIMENT: Viewing NTOSKRNI and HAI Image Dependencies

You can view the relationship of the kernel and HAL images by examining their export and
import tables using the Dependency Walker tool (Depends.exe), which is contained in the
Windows SDK. To examine an image in the Dependency Walker, select Open from the File menu
to open the desired image file.

Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using this
tool:

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl.
(They both use functions in each other.) Ntoskrnl is also linked to the following binaries:

m Pshed.dll, the Platform-Specific Hardware Error Driver. The PSHED provides an
abstraction of the hardware error reporting facilities of the underlying platform by hiding the
details of a platform’s error handling mechanisms from the operating system and exposing a

consistent interface to the Windows operating system.

m Bootvid.dll, the Boot Video Driver. Bootvid provides support for the VGA commands
required to display boot text and the boot logo during startup. On x64 kernels, this library is built
into the kernel to avoid conflicts with Kernel Patch Protection (KPP). (See Chapter 3 for more
information on KPP and PatchGuard.)

66

m Kdcom.dll, the Kernel Debugger Protocol (KD) Communications Library, described earlier.
m Ci.dll, the code integrity library, described earlier.

m Clfs.sys, the common logging file system driver, used, among other things, by the Kernel
Transaction Manager (KTM). (See Chapter 3 for more information on the KTM.)

For a detailed description of the information displayed by this tool, see the Dependency
Walker help file (Depends.hlp).

2.4.6 Device Drivers

Although device drivers are explained in detail in Chapter 7, this section provides a brief
overview of the types of drivers and explains how to list the drivers installed and loaded on your

system.

Device drivers are loadable kernel-mode modules (typically ending in .sys) that interface
between the I/O manager and the relevant hardware. They run in kernel mode in one of three
contexts:

m In the context of the user thread that initiated an I/O function
m In the context of a kernel-mode system thread

m As a result of an interrupt (and therefore not in the context of any particular process or
thread—whichever process or thread was current when the interrupt occurred)

67

" e el by SRR s J '..n‘
B Dependency Wﬂker—fﬂtnskrm.exe]
W Fil= Edit iew Opban: Profle Window: Help
K= || B A EHERBM W
£l B NTOSRMNLEE 1| Crdinal 7 [Hirt Funch on | Entry Paint
A O PEHEDDLL
@ B HALDLL
B @ BOOTWIDNDLL
- 0 KDCOMDLL 1 I b
$| O CLFsss E | Srdinal » Hirt Function Entrg Pc =
R A BT | Lawdnndy| 90 (00034 | EebcquireFasthiutesnsite TR
Bl 200002y 93 (00050 | EcdequirsRundoan Protechian 0008
E IA003 940003 EY | BstoquireRundoman ProtectionCa chefaare b00ay
| 400004y 95 (005 F) | EedequireRundoven ProtectionCachefavareEz kOO0T
(] SOl 005y 90 (00007 | ErdcquireRundoen ProtectionEs L0
:'-_| : . ST S e — s —— S = --h-pﬁ
“ | wWodule | File Time Gtarmp | Link Time Samp | File Size | At | LinkChecksum | Real Checksum | CRU | Subsystern
O [pocTvDOLL [0L/19/2008 12 41e | 01719/2000 12:27a 24,10 |4 G000 E0EY l000050ED =Hh Hatve
1 s 0L/192003 1243z | 0LA19/2008 12718 614,968 | A ednnaEsan D:0009ER2D E Mative
B |cLFsEs 0L/1972008 12:42s | DLF18/2008 10:18p 141,352 | A OO0 A5ETID I 0045ETD =k Hative
B |HALDLL DLA192003 12:42a | 01718/ 2008 10:2 7p 177208 | A J003BTF I:0003359F B Mative
O | koo 01192008 12:41s | DLF19/2008 12:11a 19.512 | A enn103En I=000103EA =R Hative
O | WTO@ANLEXE | DL/L9FI008 12433 | DL/18/Z00% 10:3 0p ENE R D03 0A8CE D00 30A8CE R Mztive
& | pa-HEDDLL 0L/192003 12422 | 0LA19/2008 12:71a 51768 | A D013 A A D=0 00134848 aRA Mative
4| n 3
For Help, press F1 i

As stated in the preceding section, device drivers in Windows don’t manipulate hardware
directly, but rather they call functions in the HAL to interface with the hardware. Drivers are
typically written in C (sometimes C++) and therefore, with proper use of HAL routines, can be
source code portable across the CPU architectures supported by Windows and binary portable

within an architecture family.
There are several types of device drivers:

m Hardware device drivers manipulate hardware (using the HAL) to write output to or
retrieve input from a physical device or network. There are many types of hardware device drivers,
such as bus drivers, human interface drivers, mass storage drivers, and so on.

m File system drivers are Windows drivers that accept file-oriented I/O requests and translate

them into I/O requests bound for a particular device.

m File system filter drivers, such as those that perform disk mirroring and encryption,
intercept I/Os and perform some added-value processing before passing the I/O to the next layer.

m Network redirectors and servers are file system drivers that transmit file system 1/O
requests to a machine on the network and receive such requests, respectively.

m Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and
IPX/SPX.

m Kernel streaming filter drivers are chained together to perform signal processing on data

streams, such as recording or displaying audio and video.

Because installing a device driver is the only way to add user-written kernel-mode code to
the system, some programmers have written device drivers simply as a way to access internal
operating system functions or data structures that are not accessible from user mode (but that are
documented and supported in the DDK). For example, many of the utilities from Sysinternals
combine a Windows GUI application and a device driver that is used to gather internal system
state and call kernel-mode-only accessible functions not accessible from the user-mode Windows
APL

Windows Driver Model (WDM)

Windows 2000 added support for Plug and Play, Power Options, and an extension to the
Windows NT driver model called the Windows Driver Model (WDM). Windows 2000 and later
can run legacy Windows NT 4 drivers, but because these don’t support Plug and Play and Power
Options, systems running these drivers will have reduced capabilities in these two areas.

From the WDM perspective, there are three kinds of drivers:

m A bus driver services a bus controller, adapter, bridge, or any device that has child devices.
Bus drivers are required drivers, and Microsoft generally provides them; each type of bus (such as
PCI, PCMCIA, and USB) on a system has one bus driver. Third parties can write bus drivers to
provide support for new buses, such as VMEbus, Multibus, and Futurebus.

m A function driver is the main device driver and provides the operational interface for its

device. It is a required driver unless the device is used raw (an implementation in which I/O is

68

done by the bus driver and any bus filter drivers, such as SCSI PassThru). A function driver is by
definition the driver that knows the most about a particular device, and it is usually the only driver
that accesses device-specific registers.

m A filter driver is used to add functionality to a device (or existing driver) or to modify I/O
requests or responses from other drivers (and is often used to fix hardware that provides incorrect
information about its hardware resource requirements). Filter drivers are optional and can exist in
any number, placed above or below a function driver and above a bus driver. Usually, system
original equipment manufacturers (OEMs) or independent hardware vendors (IHVs) supply filter

drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus
driver is concerned with reporting the devices on its bus to the PnP manager, while a function
driver manipulates the device.

In most cases, lower-level filter drivers modify the behavior of device hardware. For example,
if a device reports to its bus driver that it requires 4 1/O ports when it actually requires 16 1/O ports,
a lower-level, device-specific function filter driver could intercept the list of hardware resources

reported by the bus driver to the PnP manager and update the count of I/O ports.

Upper-level filter drivers usually provide added-value features for a device. For example, an
upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3. Further details about the I/O manager, WDM,
Plug and Play, and Power Options are included in Chapter 7.

Windows Driver Foundation

The Windows Driver Foundation (WDF) simplifies Windows driver development by
providing two frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode
Driver Framework (UMDF). Developers can use KMDF to write drivers for Windows 2000 SP4
and later, while UMDF supports Windows XP and later.

KMDF provides a simple interface to WDM and hides its complexity from the driver writer
without modifying the underlying bus/function/filter model. KMDF drivers respond to events that
they can register and call into the KMDF library to perform work that isn’t specific to the
hardware they are managing, such as generic power management or synchronization. (Previously,
each driver had to implement this on its own.) In some cases, more than 200 lines of WDM code
can be replaced by a single KMDF function call.

UMDF enables certain classes of drivers (mostly USB-based or other high-latency protocol
buses), such as those for video cameras, MP3 players, cell phones, PDAs, and printers, to be
implemented as user-mode drivers. UMDF runs each user-mode driver in what is essentially a
user-mode service, and it uses ALPC to communicate to a kernel-mode wrapper driver that
provides actual access to hardware. If a UMDF driver crashes, the process dies and usually restarts,
so the system doesn’t become unstable—the device simply becomes unavailable while the service
hosting the driver restarts. Finally, UMDF drivers are written in C++ using COM-like classes and

semantics, further lowering the bar for programmers to write device drivers.

69

EXPERIMENT: Viewing the Installed Device Drivers

You can list the installed drivers by running Msinfo32. (Click Start, Run, and then type
Msinfo32.) Under System Summary, expand Software Environment and open System Drivers.
Here’s an example output of the list of installed drivers:

b Sysrem Tnformintion []
File Edit Wiew Help
System Summary Mame Description Filz Type i
B Hardhware Resources ; dicrosoft ACH Driver ol ndowssystem 28 drivarsiaci. sys Femal Dravar
i C':”'"F":'"E"E_ adpomy adpodw cownin sy cystem 27 dviverclasp 0nac oys el DFhar
= Software Emironment adpahd adpake cwdndowssystem aRdriversiacpah.sys Kemel Driver
--S]..lstem Dr.ruers adpulédm adpulidm conndowsysystem 2R drivershadpulédmsys Kemel Drover
Signed Drivers aclpu3la adpu3id et n oy evste m 2 drivershacdpu2ddsye Fermal Drar
E:::T::‘:m bl afel ancilliary Function O, chwindowsy syste m 38 driversyaf o sys Kemel Driver
Natwork tannedians Afpad0 Irtel AGP Bus Filker v 1 el sy Sy Ete m 3 dviversacip 440,5ys Kemel Driver
Hunning Tagks Wit NIETAR XA 1 b 1, T Tl gl s gy Kemel e
Loaded Madles aliide #liicle: o 1o Syste m 38l ieershaliide, sy Kermel Driver
Garvices amdage AMD AGF Bus Fifter .. Cwandows systems2ydriversiamcag o s kemal Drover
— Bragranm frnins amddicle amdide coven ndowsy syste m 28 driversiamdiclesys kemel Drovar
Startup Pragrams amelk? AMD KT Processar .. chywindowsysystem3@driversiamckT sys Keme| Drivar
- OLE RegisTatian amdka AMID K& Processar.., el ndowsysyste m 32ydriversiamclks,sys kemel Driver
windows Errar Reparting || arc arc civenndows system 3Rdrvers\arcsys Keme| Drover .
prEmas ST = hrin oot me—de re R Aehenieel seme - e |»r.-u-rlm-..-..:
Fine wfat Fingd I Close Fing
[T seardh zelectad catagory anly |7 search category names only .

This window displays the list of device drivers defined in the registry, their type, and their
state (Running or Stopped). Device drivers and Windows service processes are both defined in the
same place: HKLM\SYSTEM\CurrentControlSet\Services. However, they are distinguished by a
type code—for example, type 1 is a kernel-mode device driver. (For a complete list of the
information stored in the registry for device drivers,see Table 4-7.)

Alternatively, you can list the currently loaded device drivers by selecting the System process

in Process Explorer and opening the DLL view.
Peering into undocumented Interfaces

Examining the names of the exported or global symbols in key system images (such as
Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds of things
Windows can do versus what happens to be documented and supported today. Of course, just
because you know the names of these functions doesn’t mean that you can or should call
them—the interfaces are undocumented and are subject to change. We suggest that you look at
these functions purely to gain more insight into the kinds of internal functions Windows performs,
not to bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dll gives you the list of all the system
services that Windows provides to user-mode subsystem DLLs versus the subset that each
subsystem exposes. Although many of these functions map clearly to documented and supported

70

Windows functions, several are not exposed via the Windows API. (See the article “Inside the
Native API” from Sysinternals.)

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs (such
as Kernel32.dll or Advapi32.dll) and which functions they call in NtdII.

Another interesting image to dump is Ntoskrnl.exe—although many of the exported routines
that kernel-mode device drivers use are documented in the Windows Driver Kit, quite a few are
not. You might also find it interesting to take a look at the import table for Ntoskrnl and the HAL;
this table shows the list of functions in the HAL that Ntoskrnl uses and vice versa.

Table 2-6 lists most of the commonly used function name prefixes for the executive
components. Each of these major executive components also uses a variation of the prefix to
denote internal functions—either the first letter of the prefix followed by an i (for internal) or the
full prefix followed by a p (for private). For example, Ki represents internal kernel functions, and

Psp refers to internal process support functions.

TABLE 2-6 Commonly Used Prefixes

Prefix Component

Alpc Advanced Local Inter-Process Communication
Cc Common Cache

Cm Configuration manager

Dbgk Debugging Framework for User-Mode

Em Errata Manager

Etw Event Tracing for Windows

Ex Executive support routines

You can decipher the names of these exported functions more easily if you understand the

naming convention for Windows system routines. The general format is:
< Prefix>< Operation>< Object>

In this format, Prefix is the internal component that exports the routine, Operation tells what

is being done to the object or resource, and Object identifies what is being operated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a
paged or nonpaged pool. KelnitializeThread is the routine that allocates and sets up a kernel thread
object.

71

FsRtl
Hal
Hvl

kd
ke
Lsa
M
Mt
Ob
Pf
Fo
Pp
Ps
Ril
Se
Tm
Vit
Whea

Wi
fw

File system driver run-time library

Hardware abstraction layer

Hypervisar Library

110 manager

Kernel Debugager

Kernel

Local Security Authority

Memory manager

MT system services (most of which are exported as Windows functions)
Object manager

Prefetcher

Power manager

PrP manager

Process support

Fun-time library

Security

Transaction Manager

Verifier

Windows Hardware Error Architecture
Windows Management Instrumentation
Windows Diagnostic Infrastructure

Mirror entry point for system services (beginning with MNt) that sets previous
access mode to kernel, which eliminates parameter validation, because Nt sys-
tem services validate parameters only if previous access mode is user

2.4.7 System Processes

The following system processes appear on every Windows system. (Two of these—Idle and

System—are not full processes, as they are not running a user-mode executable.)

m Idle process (contains one thread per CPU to account for idle CPU time)

m System process (contains the majority of the kernel-mode system threads)

m Session manager (Smss.exe)

m Local session manager (Lsm.exe)

m Windows subsystem (Csrss.exe)

m Session 0 initialization (Wininit.exe)

m Logon process (Winlogon.exe)

72

m Service control manager (Services.exe) and the child service processes it creates (such as

the system-supplied generic service-host process, Svchost.exe)
m Local security authentication server (Lsass.exe)

To understand the relationship of these processes, it is helpful to view the process “tree”—
that is, the parent/child relationship between processes. Seeing which process created each process
helps to understand where each process comes from. Figure 2-5 is a screen snapshot of the process
tree viewed after taking a Process Monitor boot trace. Using Process Monitor is the only way to
see the real process tree because, as we’ll see later, the session manager will spawn copies of itself

for each session being created and then terminate them.

-

|
Y Process Explater - Sysinternals: wantnssysinternals.com [ALEX-LAPTORY,., EI
File Option: Wiew Process Find Users Help
Bo= Bysac NN N
Process FID Description =
= B System |dle Process 0
B Internipts n/a Hardware Intermupts
B DPC: n#a Deferred Procedure Callz
= 5] Spstern 4
(25 smsz. eme 400 *indows Seszion Manager
[E7] ceresane 4E8 Chent Server Runtime Process
[E] csrss.exe 520 Cliert Server Runtime Process =
=[] wiririt. exe 528 Windows Start-Up Application
= [57] zervices eve E24 Cervices and Contraller app
[22 svchost. exe 784 Host Process for Windows Services
[22] svchost. exe 240 Host Process for Windows Services
[22] svchost. exe 340 Host Process for Windows Services
[Slavi.exe 924 Microzoft Software Licensing Service
[[m] svchost. exe 1002 Host Process for Windows Services 2
B svchost exe 1048 Hozt Process for Windows Services
(57 svchost. exe 1364 Host Process for Windows Services
(27 zpoalzv.exe 1468 Spoaler SubSystem App
(27 svchost. exe 1620 Host Process for Windows Services
[57] svchost. exe 1736 Host Process for Windows Services
(57 lsazzene B36 Local Secunty Authornity Process
(B Iz exe E44 Local Session Manager Service
ﬁ winlagon, exe B33 Windaws Laogon Applicatian o
CPU Usage: 8.50% CommitCharge: 16.58%% Processes: 36 Threads: 407 Handles: 99

FIGURE 2-5 Initial system process tree

The next sections explain the key system processes shown in Figure 2-5. Although these
sections briefly indicate the order of process startup, Chapter 13 contains a detailed description of

the steps involved in booting and starting Windows.

Idle Process

73

The first process listed in Figure 2-5 is the system idle process. As we’ll explain in Chapter 5,
processes are identified by their image name. However, this process (as well as the process named
System) isn’t running a real user-mode image (in that there is no “System Idle Process.exe” in the
\Windows directory). In addition, the name shown for this process differs from utility to utility
(because of implementation details). Table 2-7 lists several of the names given to the Idle process
(process ID 0). The Idle process is explained in detail in Chapter 5.

TABLE 2-7 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0
Task Manager System |dle Process
Process Status (Pstat.exe) Idle Process

Process Explorer (Procexp.exe) System Idle Process
Task List (Tasklist.exe) System Idle Process

Now let’s look at system threads and the purpose of each of the system processes that are running

real images.

Interrupts and DPCs

The two lines labeled Interrupts and DPCs represent time spent servicing interrupts and
deferred procedure calls. These mechanisms are explained in Chapter 3. Note that while Process
Explorer displays these as entries in the process list, they are not processes. They are shown
because they account for CPU time not charged to any process. (For example, a system with heavy

interrupt activity will not appear as a process consuming CPU time.)

Note that Task Manager includes interrupt and DPC time in the system idle time. Thus a
system with heavy interrupt activity will appear to be idle when using Task Manager.

System Process and System Threads

The System process (process ID 4) is the home for a special kind of thread that runs only in
kernel mode: a kernel-mode system thread. System threads have all the attributes and contexts of
regular user-mode threads (such as a hardware context, priority, and so on) but are different in that
they run only in kernel-mode executing code loaded in system space, whether that is in
Ntoskrnl.exe or in any other loaded device driver. In addition, system threads don’t have a user
process address space and hence must allocate any dynamic storage from operating system
memory heaps, such as a paged or nonpaged pool.

System threads are created by the PsCreateSystemThread function (documented in the WDK),
which can be called only from kernel mode. Windows as well as various device drivers create
system threads during system initialization to perform operations that require thread context, such
as issuing and waiting for I/Os or other objects or polling a device. For example, the memory
manager uses system threads to implement such functions as writing dirty pages to the page file or

mapped files, swapping processes in and out of memory, and so forth. The kernel creates a system

74

thread called the balance set manager that wakes up once per second to possibly initiate various
scheduling and memory management-related events. The cache manager also uses system threads
to implement both read-ahead and write-behind I/Os. The file server device driver (Srv2.sys) uses
system threads to respond to network I/O requests for file data on disk partitions shared to the
network. Even the floppy driver has a system thread to poll the floppy device. (Polling is more
efficient in this case because an interrupt-driven floppy driver consumes a large amount of system
resources.) Further information on specific system threads is included in the chapters in which the
component is described.

By default, system threads are owned by the System process, but a device driver can create a
system thread in any process. For example, the Windows subsystem device driver (Win32k.sys)
creates a system thread inside the Canonical Display Driver (Cdd.dll) part of the Windows
subsystem process (Csrss.exe) so that it can easily access data in the user-mode address space of
that process.

When you’re troubleshooting or going through a system analysis, it’s useful to be able to map
the execution of individual system threads back to the driver or even to the subroutine that
contains the code. For example, on a heavily loaded file server, the System process will likely be
consuming considerable CPU time. But the knowledge that when the System process is running
that “some system thread” is running isn’t enough to determine which device driver or operating

system component is running.

So if threads in the System process are running, first determine which ones are running (for
example, with the Performance tool). Once you find the thread (or threads) that is running, look up
in which driver the system thread began execution (which at least tells you which driver likely
created the thread) or examine the call stack (or at least the current address) of the thread in

question, which would indicate where the thread is currently executing.

Both of these techniques are illustrated in the following experiments.

EXPERIMENT: Mapping a System Thread to a Device Driver

In this experiment, we’ll see how to map CPU activity in the System process to the
responsible system thread (and the driver it falls in) generating the activity. This is important
because when the System process is running, you must go to the thread granularity to really
understand what’s going on. For this experiment, we will generate system thread activity by
generating file server activity on your machine. (The file server driver, Srv2.sys, creates system
threads to handle inbound requests for file /0. See Chapter 12 for more information on this
component.)

1. Open a command prompt.

2. Do a directory listing of your entire C drive using a network path to access your C drive.
For example, if your computer name is COMPUTERI, type dir \\computerl\c$ /s. (The /s switch
lists all subdirectories.)

3. Run Process Explorer, and double-click on the System process.
4. Click on the Threads tab.

75

5. Sort by the CSwitch Delta (context switch delta) column. You should see one or more
threads in Srv2.sys running, such as the following:

| TiD CRU CEI\I‘I:CFI Delta | Stark Address =
457 srw syl SeProciilorker Thresd]
ntamipa. exelkKeSwapProresOrstack
] 73 nitkmipa, exe!Phase nitalzation
30 34 stwrbepye4xgddia
44 27 ntimipa, pee ExpWorkerThraad
4 25 ntgnipa. evelKeBalanceSe tManager
43 1¥ nbomipa. exc!ExpWorker Thremd
40 14 nbonipa. exelExpidorkerThread
a@ss 11 nbanipa. exelP fTLoggng Worker
3y 11 MU= sysITufFrivateThresdioreerAoutine
TG & nbonipa. exelExpWorkerThreed
112 4 nidrmipa. grelCojususl a2yt EScanThresd
530 3 dwgkrnl. sysvidschiviarieer Thread
:v] 3 nikripa, exe!ExpWerkerThreadSalancef4ansoar
2208 3 bowaudio.sye+0x3225
3118 3 bowawdt.sye +0n LESS
128 I nbkmipa. exelEtwplogger
132 3 nbanipa. exe!Etvplooger
135 3 ntkmipa, exe'Etwologger
193 3 ntgmipa, eee!EtwoLogoar
|59 1 nbamipa. exe!Eteplogger -
Thresd I0: 56 | s || momie |
Start Time: 2:45:34 M 2Ff04 /3008
State: WalbWrlueus Base Pricrity: 12
kel Tie: (e01:56,535 Dyramic Prioniby: 13
Uigar Thwe: H00: 00,000 10 Pricrity: rga
Context Switdhea: 3,575,572 Moy Prionity: na
[smeme |
o | [gancd |

76

i sre2 syws Properties !".

| Generall Securit_l.ll Detail: | Previous Yersions

Property Walie

Description

File description Smb 2 0 Server driver

Tupe Syztem File

File wersion E.0.E007.1 2000

Froduct name Microsoft® wWindows® Operating Swstem
Froduct werzsion 5.0.60071.1 8000

Copuright 2 b icozoft Corporation. All rights reser. ..
Size 141 KB

Date modified 1/18/2008 10:23 Ph4

Larnguage Englizh [United States)

Eemove Properties and Personal Information

[ak,] [Cancel] g.ppl_l,l

If you see a system thread running and you are not sure what the driver is, click the Module
button, which will bring up the file properties. Clicking the Module button while highlighting the
thread in Srv2.sys previously shown results in the following display.

Session Manager (Smss)

The session manager (%SystemRoot%\Smss.exe) is the first user-mode process created in the
system. The kernel-mode system thread that performs the final phase of the initialization of the

executive and kernel creates the actual Smss process.

The session manager is responsible for a number of important steps in starting Windows,
such as opening additional page files, performing delayed file rename and delete operations, and
creating system environment variables. It also launches the subsystem processes (normally just
Csrss.exe) and either the Wininit or Winlogon processes, the former of which in turn creates the
rest of the system processes.

Much of the configuration information in the registry that drives the initialization steps of
Smss can be found under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. Some
of these are explained in Chapter 13 in the section on Smss.

Smss also creates user sessions. When Smss creates the first interactive user session (the
console session) or when a request to create a session is received, it creates a copy of itself inside
that session. The copy calls NtSetSystemInformation with a request to set up kernel mode session
data structures. This in turn calls the internal memory manager function MmSessionCreate, which

77

sets up the session virtual address space that will contain the session Chapter 2 System
Architecture 79 paged pool and the per-session data structures allocated by the kernel-mode part
of the Windows subsystem (Win32k.sys) and other session-space device drivers. (See Chapter 9
for more details.) Smss then creates an instance of Winlogon and Csrss for the session. For session

0, Smss creates Wininit instead.

By having parallel copies of itself during boot-up and Terminal Services session creation,
Smss can create multiple sessions at the same time (at minimum four concurrent sessions, plus one
more for each extra CPU beyond one). This ability enhances logon performance on Terminal
Server systems where multiple users connect at the same time. Once a session finishes initializing,

the copy of Smss terminates. As a result, only the initial Smss.exe process remains active.

The main thread in Smss waits forever on the process handles to Csrss and Winlogon. If
either of these processes terminates unexpectedly, Smss crashes the system (using the crash code
STATUS _SYSTEM_PROCESS TERMINATED, or 0xC000021A), because Windows relies on
their existence. Meanwhile, Smss waits for requests to load subsystems, debug events, and
requests to create new Terminal Server sessions. (For a description of Terminal Services, see the

section “Terminal Services and Multiple Sessions” in Chapter 1.)

Winlogon, LogonUlI, LSASS, and Userinit

The Windows logon process (%SystemRoot%\Winlogon.exe) handles interactive user logons
and logoffs. Winlogon is notified of a user logon request when the secure attention sequence (SAS)
keystroke combination is entered. The default SAS on Windows is the combination
Ctrl+Alt+Delete. The reason for the SAS is to protect users from password-capture programs that
simulate the logon process, because this keyboard sequence cannot be intercepted by a user-mode
application.

The identification and authentication aspects of the logon process are implemented through
DLLs called credential providers. The standard Windows credential providers implement the
default Windows authentication interfaces: password and smartcard. However, developers can
provide their own credential providers to implement other identification and authentication
mechanisms in place of the standard Windows username/password method (such as one based on
a voice print or a biometric device such as a fingerprint reader). Because Winlogon is a critical
system process on which the system depends, credential providers and the UI to display the logon
dialog box run inside a child process of Winlogon called LogonUI. When Winlogon detects the
SAS, it launches this process, which initializes the credential providers.

Once the user enters her credentials or dismisses the logon interface, the LogonUI process
terminates.In addition, Winlogon can load additional network provider DLLs that need to perform
secondary authentication. This capability allows multiple network providers to gather
identification and authentication information all at one time during normal logon.Once the
username and password have been captured, they are sent to the local security authentication
server process (%SystemRoot%\Lsass.exe, described in Chapter 6) to be authenticated. LSASS

calls the appropriate authentication package (implemented as a DLL) to perform the actual

78

verification, such as checking whether a password matches what is stored in the Active Directory
or the SAM (the part of the registry that contains the definition of the users and groups).

Upon a successful authentication, LSASS calls a function in the security reference monitor
(for example, NtCreateToken) to generate an access token object that contains the user’s security
profile. If User Account Control (UAC) is used and the user logging on is a member of the
administrators group or has administrator privileges, LSASS will create a second, restricted
version of the token. This access token is then used by Winlogon to create the initial process(es) in
the user’s session. The initial process(es) are stored in the registry value Userinit under the registry
key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. (The default is
Userinit.exe, but there can be more than one image in the list.)

Userinit performs some initialization of the user environment (such as running the login
script and applying group policies) and then looks in the registry at the Shell value (under the
same Winlogon key referred to previously) and creates a process to run the system-defined shell
(by default, Explorer.exe). Then Userinit exits. This is the reason Explorer.exe is shown with no
parent—its parent has exited, and as explained in Chapter 1, tlist left-justifies processes whose
parent isn’t running. (Another way of looking at it is that Explorer is the grandchild of Winlogon.)

Winlogon is active not only during user logon and logoff but also whenever it intercepts the
SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged on, the
Windows Security dialog box comes up, providing the options to log off, start the Task Manager,
lock the workstation, shut down the system, and so forth. Winlogon is the process that handles this

interaction.

For a complete description of the steps involved in the logon process, see the section “Smss,
Csrss, and Wininit” in Chapter 13. For more details on security authentication, see Chapter 6. For
details on the callable functions that interface with LSASS (the functions that start with Lsa), see

the documentation in the Windows SDK.

Service Control Manager (SCM)

Recall from earlier in the chapter that “services” on Windows can refer either to a server
process or to a device driver. This section deals with services that are user-mode processes.
Services are like UNIX “daemon processes” or VMS “detached processes” in that they can be

configured to start automatically at system boot time without requiring an interactive logon.

They can also be started manually (such as by running the Services administrative tool or by
calling the Windows StartService function). Typically, services do not interact with the loggedon

user, although there are special conditions when this is possible. (See Chapter 4.)

The service control manager is a special system process running the image %SystemRo0t%\
Services.exe that is responsible for starting, stopping, and interacting with service processes.
Service programs are really just Windows images that call special Windows functions to interact
with the service control manager to perform such actions as registering the service’s successful
startup, responding to status requests, or pausing or shutting down the service. Services are
defined in the registry under HKLM\SY STEM\CurrentControlSet\Services.

79

Keep in mind that services have three names: the process name you see running on the
system, the internal name in the registry, and the display name shown in the Services
administrative tool. (Not all services have a display name—if a service doesn’t have a display
name, the internal name is shown.) With Windows, services can also have a description field that
further details what the service does.

To map a service process to the services contained in that process, use the tlist /s or tasklist
/sve command. Note that there isn’t always one-to-one mapping between service process and
running services, however, because some services share a process with other services. In the
registry, the type code indicates whether the service runs in its own process or shares a process
with other services in the image.

A number of Windows components are implemented as services, such as the Print Spooler,

Event Log, Task Scheduler, and various networking components.

EXPERIMENT: listing Installed Services

To list the installed services, select Administrative Tools from Control Panel, and then select

Services. You should see output like this:

80

| Bl Action View Help
g =B

[Sepsices {Local)

-

Print Spooler - Hame | Deacription Statur Starkup Type Log On As

) 3 NI Sfceeasll Started Autametic Local Syste...
M:I::::I::i:e 5 Office Source Engin. Saves install.. Wanual Local Syste.,
15 Cffine Files The CAfline .. Disabled Loeal Syste..

k%Perquman:t Logi. Peformane .. [ETTER] Local Service

b s nphion: i Plug and Play Enabiles ac., Swtam atic Local Byste.,,
:ﬂjﬁfﬁf;'e’ SR mEROT For fatee Y PRP-K TP Bus Erde The PRR-E ., Disabled Local Syste.,
:% Porkable Device B Enforces gri. Mlanual Local %’s’::...

- e L T

'.'% Prablern Reports a., This sendce . LELTTEY Local Byste.,,

'n.";EFmb:ct:d Starage Prowides pr.. Putamutic Loral Syste..

-[kRzmutt Access b, Createsaca.. klanual Local Sypste..

i Remote Aeceaz G hanages di Dizabled Local Syste..

T Remote Procedur., Serses as th. Autam atic Mebwork 5.

'-QRzmute Procedur., Manages th. mlanuz| Metwork 5.

lf%ﬁ:mutt Feigi sty Enables rer.,. Disabled Loral Senvice

:%R:sullant Zek of P.. Prowides an.., klanual Local Sypste.

-SE. Rﬂuhng and =, Offers rouh,.. [isabled Local 5_|ril:l...

lﬁ Secondery Lagen Enablea atar., Drabled Loeal Syste..,

L Secur Sacket Tum,. Prosides su,. Disabled Leeal Servica

'-m._i::urib‘r Areounk:.. The dartup ... Started hlariuzl Local Syste...

e r S S S O S L e
1| El] v

% Extended J Standard [

General

Service name:

Dizplay name: Frirtt 5 pocler

D escription: Loads filez to mermomy for later printing

Fath to executable:
C:wwfindowshSpstemd2hspoczy. exe

Startup tope: Automatic A

Help me configure service startup oplions.

Service stalus: Started

[Stark] [__ Stap _] [FPauze] [Rezume

“ou can specify the start parameters that apply when pou start the service
from here.

Start paramsters:

Ok | LCancel :E,l £pply

81

To see the detailed properties about a service, right-click on a service and select Properties.
For example, here are the properties for the Print Spooler service (highlighted in the previous

screen shot):

Notice that the Path To Executable field identifies the program that contains this service.
Remember that some services share a process with other services—mapping isn’t always one to

one.

EXPERIMENT: Viewing Service Details Inside Service Processes

Process Explorer highlights processes hosting one service or more. (You can configure this
by selecting the Configure Highlighting entry in the Options menu.) If you doubleclick on a
service-hosting process, you will see a Services tab that lists the services inside the process, the
name of the registry key that defines the service, the display name seen by the administrator, the
description text for that service (if present), and for Svchost services, the path to the DLL that
implements the service. For example, listing the services in a Svchost.exe process on Windows

Vista running under the System account looks like the following.

Eﬁ swchost.exe:960 Properties -.I'ﬂ.

| Irnage | Performance | Performance Graph | Services |Threads | TiZP(IP I SECiky | Erirorinmznt I 5trings|

% Services registersd in this process:

Service Dizplay M ame

1 Application Information L
Appbd gl Application M ariagenenl C oS pslenn 32 happngils, Jil
LanmanServer Server C:hafindomzbazternd2hereeve.dll
kMCSS Fultimedia Clazz Scheduler C:Awindowshaystermd2hmmezs. dll
Themes Themesz C:NwfindowshspstemI2hehevcs. dil
Wafinmgrit whindows Management Instrumentation C:Nwfindowshspstemd2hbem'a/bd Lo dll

Facilitates the running of interactive applications with additional administrative privieges. If this zervice is
stopped, uzerz will be unable ta launch applications with the addbonal adminiztrative prvileges they man
require to perform desired uzer tasks,

Permizzions Stop Pauze | Feszume

[Ik] [Cancel

For more details on services, see Chapter 4.

82

2.5 Conclusion

In this chapter, we’ve taken a broad look at the overall system architecture of Windows.
We’ve examined the key components of Windows and seen how they interrelate. In the next
chapter, we’ll look in more detail at the core system mechanisms that these components are built
on, such as the object manager and synchronization.

83

3. System Mechanisms

The Windows operating system provides several base mechanisms that kernel-mode
components such as the executive, the kernel, and device drivers use. This chapter explains the
following system mechanisms and describes how they are used:

m Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous
procedure calls (APCs), exception dispatching, and system service dispatching

m The executive object manager

m Synchronization, including spinlocks, kernel dispatcher objects, how waits are
implemented, as well as user-mode-specific synchronization primitives that avoid trips to kernel
mode (unlike typical dispatcher objects)

m System worker threads

m Miscellaneous mechanisms such as Windows global flags
m Advanced local procedure calls (ALPCs)

m Kernel Event Tracing

m Wow64

m User-mode debugging

m The image loader

m Hypervisor (Hyper-V)

m Kernel Transaction Manager (KTM)

m Kernel Patch Protection (KPP)

m Code integrity

3.1 Trap Dispatching

Interrupts and exceptions are operating system conditions that divert the processor to code
outside the normal flow of control. Either hardware or software can detect them. The term trap
refers to a processor’s mechanism for capturing an executing thread when an exception or an

interrupt occurs and transferring control to a fixed location in the operating system.

In Windows, the processor transfers control to a trap handler, a function specific to a
particular interrupt or exception. Figure 3-1 illustrates some of the conditions that activate trap
handlers.

84

The kernel distinguishes between interrupts and exceptions in the following way. An
interrupt is an asynchronous event (one that can occur at any time) that is unrelated to what the
processor is executing. Interrupts are generated primarily by I/O devices, processor clocks, or
timers, and they can be enabled (turned on) or disabled (turned off). An exception, in contrast, is a
synchronous condition that results from the execution of a particular instruction.

Running a program a second time with the same data under the same conditions can
reproduce exceptions. Examples of exceptions include memory access violations, certain debugger
instructions, and divide-by-zero errors. The kernel also regards system service calls as exceptions

(although technically they’re system traps).

Trap handlers

Interrupt

Interrupt ’ service

routines

| |
| |
; System
System service call ’ e

services

Hardware exceptions _ (Exception _,| Exception Exception
Software exceptions frame) dispatcher handlers

Virtual memory
Virtual address *| manager's
exceptions pager

FIGURE 3-1 Trap dispatching

Either hardware or software can generate exceptions and interrupts. For example, a bus error
exception is caused by a hardware problem, whereas a divide-by-zero exception is the result of a
software bug. Likewise, an I/O device can generate an interrupt, or the kernel itself can issue a
software interrupt (such as an APC or DPC, described later in this chapter).

When a hardware exception or interrupt is generated, the processor records enough machine
state on the kernel stack of the thread that’s interrupted so that it can return to that point in the
control flow and continue execution as if nothing had happened. If the thread was executing in
user mode, Windows switches to the thread’s kernel-mode stack. Windows then creates a trap

frame on the kernel stack of the interrupted thread into which it stores the execution state of the

85

thread. The trap frame is a subset of a thread’s complete context, and you can view its definition
by typing dt nt! ktrap frame in the kernel debugger. (Thread context is described in Chapter 5.)
The kernel handles software interrupts either as part of hardware interrupt handling or
synchronously when a thread invokes kernel functions related to the software interrupt.

In most cases, the kernel installs front-end trap handling functions that perform general trap
handling tasks before and after transferring control to other functions that field the trap. For
example, if the condition was a device interrupt, a kernel hardware interrupt trap handler transfers
control to the interrupt service routine (ISR) that the device driver provided for the interrupting
device. If the condition was caused by a call to a system service, the general system service trap
handler transfers control to the specified system service function in the executive. The kernel also
installs trap handlers for traps that it doesn’t expect to see or doesn’t handle. These trap handlers
typically execute the system function KeBugCheckEx, which halts the computer when the kernel
detects problematic or incorrect behavior that, if left unchecked, could result in data corruption.
(For more information on bug checks, see Chapter 14.) The following sections describe interrupt,
exception, and system service dispatching in greater detail.

3.1.1 Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O devices that must notify the
processor when they need service. Interrupt-driven devices allow the operating system to get the
maximum use out of the processor by overlapping central processing with I/O operations. A
thread starts an /O transfer to or from a device and then can execute other useful work while the
device completes the transfer. When the device is finished, it interrupts the processor for service.
Pointing devices, printers, keyboards, disk drives, and network cards are generally interrupt

driven.

System software can also generate interrupts. For example, the kernel can issue a software
interrupt to initiate thread dispatching and to asynchronously break into the execution of a thread.
The kernel can also disable interrupts so that the processor isn’t interrupted, but it does so only
infrequently—at critical moments while it’s processing an interrupt or dispatching an exception,

for example.

The kernel installs interrupt trap handlers to respond to device interrupts. Interrupt trap
handlers transfer control either to an external routine (the ISR) that handles the interrupt or to an
internal kernel routine that responds to the interrupt. Device drivers supply ISRs to service device
interrupts, and the kernel provides interrupt handling routines for other types of interrupts.

In the following subsections, you’ll find out how the hardware notifies the processor of
device interrupts, the types of interrupts the kernel supports, the way device drivers interact with
the kernel (as a part of interrupt processing), and the software interrupts the kernel recognizes

(plus the kernel objects that are used to implement them).

Hardware Interrupt Processing

86

On the hardware platforms supported by Windows, external I/O interrupts come into one of
the lines on an interrupt controller. The controller in turn interrupts the processor on a single line.
Once the processor is interrupted, it queries the controller to get the interrupt request (IRQ). The
interrupt controller translates the IRQ to an interrupt number, uses this number as an index into a
structure called the interrupt dispatch table (IDT), and transfers control to the appropriate interrupt
dispatch routine. At system boot time, Windows fills in the IDT with pointers to the kernel
routines that handle each interrupt and exception.

EXPERIMENT: Viewing the IDT

You can view the contents of the IDT, including information on what trap handlers Windows
has assigned to interrupts (including exceptions and IRQs), using the !idt kernel debugger
command. The !idt command with no flags shows vectors that map to addresses in modules other
than Ntoskrnl.exe.

The following example shows what the output of the !idt command looks like:

1. Ikd> lidt

2. Dumping IDT:

3. 37: 823b50e8 hal!PicSpuriousService37

4_ 51: 89714cdO0 dxgkrnl!DpiFdoLinelnterruptRoutine (KINTERRUPT 89714c80)
5. 52: 887f52d0 USBPORTIUSBPORT_InterruptService (KINTERRUPT 887f5280)
6. 62: 887f5a50 USBPORTIUSBPORT_InterruptService (KINTERRUPT 887f5a00)
7. USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5000)

8. 72: 861137d0 ataport!ldePortinterrupt (KINTERRUPT 86113780)

9. 81: 89237050 i18042prt!18042KeyboardInterruptService (KINTERRUPT 89237000)
10. 82: 86113a50 ataport!ldePortinterrupt (KINTERRUPT 86113a00)

11.91: 892372d0 18042prt!18042MouselnterruptService (KINTERRUPT 89237280)
12.a2: 89237cd0 sdbus!Sdbusinterrupt (KINTERRUPT 89237c80)

13. rimmptsk+0x682E (KINTERRUPT 89237a00)

14. rimsptsk+0x6780 (KINTERRUPT 89237780)

15. rixdptsk+0x6820 (KINTERRUPT 89237500)

16. a3: 887f57d0 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5780)
17 . HDAudBus!HdaController::Isr (KINTERRUPT 86113280)

18. a8: 86113050 ndis!ndisMiniportMessagelsr (KINTERRUPT 86113000)

19. a9: 87d35cd0 ndis!ndisMiniportMessagelsr (KINTERRUPT 87d35c80)

20. aa: 87d35a50 ndis!ndisMiniportMessagelsr (KINTERRUPT 87d35a00)

21_ab: 87d357d0 ndis!ndisMiniportMessagelsr (KINTERRUPT 87d35780)

22_ac: 87d35550 ndis!ndisMiniportMessagelsr (KINTERRUPT 87d35500)

23. ad: 87d352d0 ndis!ndisMiniportMessagelsr (KINTERRUPT 87d35280)

24 _ae: 87d35050 ndis!ndisMiniportMessagelsr (KINTERRUPT 87d35000)

25_ af: 887f5cd0 ndis!ndisMiniportMessagelsr (KINTERRUPT 887f5c80)

26.b0: 86113550 ndis!ndisMiniportMessagelsr (KINTERRUPT 86113500)

27.bl: 86113cdO acpi!ACPIlInterruptServiceRoutine (KINTERRUPT 86113c80)
28. b3: 8875550 USBPORTIUSBPORT_ InterruptService (KINTERRUPT 887f5500)

87

29.cl: 823b53d8 hallHalpBroadcastCallService
30.d1: 823a3c64 hal!lHalpHpetClocklnterrupt
31.d2: 823a3f08 hal!HalpHpetRolloverlnterrupt
32_df: 823b51cO0 hal!HalpApicRebootService
33.el: 823b5934 hallHalplpiHandler
34_e3: 823b56d4 hallHalpLocalApicErrorService
35. fd: 823b5edc hal!HalpProfilelnterrupt
On the system used to provide the output for this experiment, the keyboard device driver’s
(I8042prt.sys) keyboard ISR is at interrupt number 0x91.

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the
IDT to configure trap handlers for exceptions. For example, the x86 and x64 exception number for
a page fault (an exception that occurs when a thread attempts to access a page of virtual memory
that isn’t defined or present) is Oxe. Thus, entry Oxe in the IDT points to the system’s page fault
handler. Although the architectures supported by Windows allow up to 256 IDT entries, the
number of IRQs a particular machine can support is determined by the design of the interrupt

controller the machine uses.

Each processor has a separate IDT so that different processors can run different ISRs, if
appropriate. For example, in a multiprocessor system, each processor receives the clock interrupt,
but only one processor updates the system clock in response to this interrupt. All the processors,
however, use the interrupt to measure thread quantum and to initiate rescheduling when a thread’s
quantum ends. Similarly, some system configurations might require that a particular processor
handle certain device interrupts.

x86 Interrupt Controllers

Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a
variant of the 182489 Advanced Programmable Interrupt Controller (APIC); the majority of new
computers include an APIC. The PIC standard originates with the original IBM PC. The i8259A
PIC works only with uniprocessor systems and only has 8 interrupt lines. However, the IBM PC
architecture defined the addition of a second PIC, called the slave, whose interrupts are
multiplexed into one of the master PIC’s interrupt lines. This provides 15 total interrupts (7 on the
master and 8 on the slave, multiplexed through the master’s eighth interrupt line). APICs and
Streamlined Advanced Programmable Interrupt Controllers (SAPICs, discussed shortly) work
with multiprocessor systems and have 256 interrupt lines. Intel and other companies have defined
the Multiprocessor Specification (MP Specification), a design standard for x86 multiprocessor
systems that centers on the use of APIC. To provide compatibility with uniprocessor operating
systems and boot code that starts a multiprocessor system in uniprocessor mode, APICs support a
PIC compatibility mode with 15 interrupts and delivery of interrupts to only the primary processor.
Figure 3-2 depicts the APIC architecture. The APIC actually consists of several components: an
I/O APIC that receives interrupts from devices, local APICs that receive interrupts from the I/O
APIC on the bus and that interrupt the CPU they are associated with, and an i8259A-compatible
interrupt controller that translates APIC input into PIC-equivalent signals. Because there can be
multiple /O APICs on the system, motherboards typically have a piece of core logic that sits

88

between them and the processors. This logic is responsible for implementing interrupt routing
algorithms that both alance the device interrupt load across processors and attempt to take
advantage of locality, delivering device interrupts to the same processor that has just fielded a
previous interrupt of the same type. Software programs can reprogram the I/O APICs with a fixed
routing algorithm that bypasses this piece of chipset logic. Windows does this by programming
the APICs in “interrupt one processor in the following set” routing mode.

CPUOD CPU1
Local Local
APIC APIC
| — i82590A -
Device 1/O g
interrupts =— APIC equ;;glent

FIGURE 3-2 %86 APIC architecture

x64 Interrupt Controllers

Because the x64 architecture is compatible with x86 operating systems, x64 systems must
provide the same interrupt controllers as does the x86. A significant difference, however, is that
the x64 versions of Windows will not run on systems that do not have an APIC as they use the

APIC for interrupt control.

1A64 Interrupt Controllers

The [A64 architecture relies on the Streamlined Advanced Programmable Interrupt
Controller (SAPIC), which is an evolution of the APIC. Even if load balancing and routing are
present in the firmware, Windows does not take advantage of it; instead, it statically assigns

interrupts to processors in a round-robin manner.

EXPERIMENT: Viewing the PIC and APIC

89

You can view the configuration of the PIC on a uniprocessor and the APIC on a
multiprocessor by using the !pic and !apic kernel debugger commands, respectively. Here’s the
output of the !pic command on a uniprocessor. (Note that the !pic command doesn’t work if your
system is using an APIC HAL.)

1. Ikd> !pic

2. ————- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
3. Physically in service:

4. Physically masked: . . .Y . . YY . .Y _ .Y .

5. Physically requested:

6. Level Triggered:Y . . .Y .Y .

Here’s the output of the !apic command on a system running with the MPS HAL.:

1. 1kd> lapic

2. Apic @ fffe0000 ID:0 (40010) LogDesc:01000000 DestFmt:ffFfffff TPR 20
3. TimeCnt: Obebc200clk SpurVec:3f FaultVec:e3 error:0

4_ Ipi Cmd: 0004001f Vec:1F FixedDel Dest=Self edg high

5. Timer..: 000300fd Vec:FD FixedDel Dest=Self edg high masked

6. LintiO.: 0001003f Vec:3F FixedDel Dest=Self edg high masked

7. Lintil.: 000184ff Vec:FF NMI Dest=Self Ivl high masked

8. TMR: 61, 82, 91-92, Bl

9. IRR:

10. ISR:

The following output is for the !ioapic command, which displays the configuration of the I/O
APICs, the interrupt controller components connected to devices:

1. 0: kd> lioapic

2. loApic @ ffd02000 1D:8 (11) Arb:0

3. IntiO0.: 000100fF Vec:FF FixedDel PhysDest:00 edg masked
4. IntiOl.: 00000962 Vec:62 LowestDl Lg:03000000 edg

5. IntiO2.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked
6. IntiO3.: 00000971 Vec:71 LowestDI Lg:03000000 edg

7. IntiO4.: 000100fF Vec:FF FixedDel PhysDest:00 edg masked
8. IntiO5.: 00000961 Vec:61 LowestDI Lg:03000000 edg

9. IntiO6.: 00010982 Vec:82 LowestDl Lg:02000000 edg masked
10. IntiO7.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked
11. Inti08.: 000008d1 Vec:D1 FixedDel Lg:01000000 edg

12. Inti09.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked
13. IntiOA.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked
14. IntiOB.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked
15. IntiOC.: 00000972 Vec:72 LowestDl Lg:03000000 edg

16. IntiOD.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked
17. IntiOE. : 00000992 Vec:92 LowestDl Lg:03000000 edg

18. IntiOF.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked
19. Intil0.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

90

20. Intill.: 000100fFf Vec:FF FixedDel PhysDest:00 edg masked

Software Interrupt Request Levels (IRQLYS)

Although interrupt controllers perform a level of interrupt prioritization, Windows imposes
its own interrupt priority scheme known as interrupt request levels (IRQLs). The kernel represents
IRQLs internally as a number from 0 through 31 on x86 and from 0 to 15 on x64 and 1A64, with
higher numbers representing higher-priority interrupts. Although the kernel defines the standard
set of IRQLs for software interrupts, the HAL maps hardware-interrupt numbers to the IRQLs.
Figure 3-3 shows IRQLs defined for the x86 architecture, and Figure 3-4 shows IRQLs for the x64
and 1A 64 architectures.

31 High
30 Power fail
29 Inter-processor interrupt
28 Clock
27 Profile/Synch .
— Hardware interrupts
26 Device n
5 CMCI
4 z
3 Device 1 .
2 DPC/dispatch
— Software interrupts
1 APC
0 Passive +— Normal thread execution

FIGURE 3-3 x86 interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the servicing
of a lower-priority interrupt. When a high-priority interrupt occurs, the processor saves the
interrupted thread’s state and invokes the trap dispatchers associated with the interrupt. The trap
dispatcher raises the IRQL and calls the interrupt’s service routine. After the service routine
executes, the interrupt dispatcher lowers the processor’s IRQL to where it was before the interrupt
occurred and then loads the saved machine state. The interrupted thread resumes executing where
it left off. When the kernel lowers the IRQL, lower-priority interrupts that were masked might
materialize. If this happens, the kernel repeats the process to handle the new interrupts.

91

X64 l1A64

15 High/Profile High/Profile/Power
14 | Inter-processor interrupt/Power Inter-processor interrupt
13 Clock Clock
12 Synch Synch
11 Device n Device n
= : Device 1
3 Device 1 Correctable Machine Check
2 Dispatch/DPC Dispatch/DPC & Synch
1 APC APC
0 Passive/Low Passive/Low

FIGURE 3-4 x64 and |A64 interrupt request levels (IRQLs)

IRQL priority levels have a completely different meaning than thread-scheduling priorities
(which are described in Chapter 5). A scheduling priority is an attribute of a thread, whereas an
IRQL is an attribute of an interrupt source, such as a keyboard or a mouse. In addition, each
processor has an IRQL setting that changes as operating system code executes.

Each processor’s IRQL setting determines which interrupts that processor can receive. IRQLs
are also used to synchronize access to kernel-mode data structures. (You’ll find out more about
synchronization later in this chapter.) As a kernel-mode thread runs, it raises or lowers the
processor’s IRQL either directly by calling KeRaiselrql and KeLowerlrql or, more commonly,
indirectly via calls to functions that acquire kernel synchronization objects. As Figure 3-5
illustrates, interrupts from a source with an IRQL above the current level interrupt the processor,
whereas interrupts from sources with IRQLs equal to or below the current level are masked until
an executing thread lowers the IRQL.

Because accessing a PIC is a relatively slow operation, HALs that require accessing the 1/0
bus to change IRQLs, such as for PIC and 32-bit Advanced Configuration and Power Interface
(ACPI) systems, implement a performance optimization, called lazy IRQL, that avoids PIC
accesses. When the IRQL is raised, the HAL notes the new IRQL internally instead of changing
the interrupt mask. If a lower-priority interrupt subsequently occurs, the HAL sets the interrupt
mask to the settings appropriate for the first interrupt and postpones the lower-priority interrupt
until the IRQL is lowered. Thus, if no lower-priority interrupts occur while the IRQL is raised, the
HAL doesn’t need to modify the PIC.

92

IRQL setting

High
Power fall
Inter-processor interrupt
Clock
Profile/Synch

Processor A

IRQL = Clock —

Device n

Interrupts masked on _|
Processor A

CMCI

Processor B

Device 1

DPC/dispatch

APC Interrupts masked on
Processor B

+= |RQL = DPC/dispatch

Passive

FIGURE 3-5 Masking interrupts

A kernel-mode thread raises and lowers the IRQL of the processor on which it’s running,
depending on what it’s trying to do. For example, when an interrupt occurs, the trap handler (or
perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt source.
This elevation masks all interrupts at and below that IRQL (on that processor only), which ensures
that the processor servicing the interrupt isn’t waylaid by an interrupt at the same or a lower level.
The masked interrupts are either handled by another processor or held back until the IRQL drops.
Therefore, all components of the system, including the kernel and device drivers, attempt to keep
the IRQL at passive level (sometimes called low level). They do this because device drivers can
respond to hardware interrupts in a timelier manner if the IRQL isn’t kept unnecessarily elevated

for long periods.

Note An exception to the rule that raising the IRQL blocks interrupts of that level and lower
relates to APC-level interrupts. If a thread raises the IRQL to APC level and then is rescheduled
because of a dispatch/DPC-level interrupt, the system might deliver an APC level interrupt to the
newly scheduled thread. Thus, APC level can be considered a thread-local rather than
processorwide IRQL.

EXPERIMENT: Viewing the IRQL

You can view a processor’s saved IRQL with the !irql debugger command. The saved IRQL
represents the IRQL at the time just before the break-in to the debugger, which raises the IRQL to

a static, meaningless value:

93

1. kd> lirgl

2. Debugger saved IRQL for processor 0x0 -- O (LOW_LEVEL)

Note that the IRQL value is saved in two locations. The first, which represents the current IRQL,
is the processor control region (PCR), while its extension, the processor control block (PRCB),
contains the saved IRQL in the DebuggerSavelrql field. The PCR and PRCB contain information
about the state of each processor in the system, such as the current IRQL, a pointer to the
hardware IDT, the currently running thread, and the next thread selected to run. The kernel and the
HAL use this information to perform architecture-specific and machine-specific actions. Portions
of the PCR and PRCB structures are defined publicly in the Windows Driver Kit (WDK) header
file Ntddk.h, so examine that file if you want a complete definition of these structures.

You can view the contents of the PCR with the kernel debugger by using the !pcr command:

Ikd> !pcr
KPCR for Processor O at 820f4700:
Major 1 Minor 1
NtTib.ExceptionList: 9ceeb5cc8
NtTib.StackBase: 00000000
NtTib.StackLimit: 00000000
NtTib.SubSystemTib: 801ca000
NtTib.Version: 294308d9
NtTib.UserPointer: 00000001

-NtTib.SelfTib: 7ffdf000

- SelfPcr: 8204700

- Prcb: 82014820

- Irgl: 00000004

- IRR: 00000000

- IDR: FFFFFFFF

. InterruptMode: 00000000

- IDT: 81d7f400

. GDT: 81d7f000

. TSS: 801ca000

- CurrentThread: 8952d030

- NextThread: 00000000

- IdleThread: 820f8300

. DpcQueue:

© 00 N o 0o b~ W NP

NN NNR R R R R B B R R
W NP O © O N O 00 M WN R O

Because changing a processor’s IRQL has such a significant effect on system operation, the
change can be made only in kernel mode—user-mode threads can’t change the processor’s IRQL.
This means that a processor’s IRQL is always at passive level when it’s executing usermode code.
Only when the processor is executing kernel-mode code can the IRQL be higher.

Each interrupt level has a specific purpose. For example, the kernel issues an interprocessor
interrupt (IPI) to request that another processor perform an action, such as dispatching a particular
thread for execution or updating its translation look-aside buffer (TLB) cache. The system clock
generates an interrupt at regular intervals, and the kernel responds by updating the clock and

measuring thread execution time. If a hardware platform supports two clocks, the kernel adds

94

another clock interrupt level to measure performance. The HAL provides a number of interrupt
levels for use by interrupt-driven devices; the exact number varies with the processor and system
configuration. The kernel uses software interrupts (described later in this chapter) to initiate thread
scheduling and to asynchronously break into a thread’s execution.

Mapping Interrupts to IRQLs IRQL levels aren’t the same as the interrupt requests (IRQs)
defined by interrupt controllers—the architectures on which Windows runs don’t implement the
concept of IRQLs in hardware. So how does Windows determine what IRQL to assign to an
interrupt? The answer lies in the HAL. In Windows, a type of device driver called a bus driver
determines the presence of devices on its bus (PCI, USB, and so on) and what interrupts can be
assigned to a device. The bus driver reports this information to the Plug and Play manager, which
decides, after taking into account the acceptable interrupt assignments for all other devices, which
interrupt will be assigned to each device. Then it calls a Plug and Play interrupt arbiter, which
maps interrupts to IRQLs.

The algorithm for assignment differs for the various HALs that Windows includes. On ACPI
systems (including x86, x64, and 1A64), the HAL computes the IRQL for a given interrupt by
dividing the interrupt vector assigned to the IRQ by 16. As for selecting an interrupt vector for the
IRQ, this depends on the type of interrupt controller present on the system. On today’s APIC
systems, this number is generated in a round-robin fashion, so there is no computable way to
figure out the IRQ based on the interrupt vector or the IRQL.

Predefined IRQLs Let’s take a closer look at the use of the predefined IRQLSs, starting from
the highest level shown in Figure 3-4:

m The kernel uses high level only when it’s halting the system in KeBugCheckEx and
masking out all interrupts.

m Power fail level originated in the original Windows NT design documents, which specified
the behavior of system power failure code, but this IRQL has never been used.

m Inter-processor interrupt level is used to request another processor to perform an action,
such as updating the processor’s TLB cache, system shutdown, or system crash.

m Clock level is used for the system’s clock, which the kernel uses to track the time of day as

well as to measure and allot CPU time to threads.

m The system’s real-time clock (or another source, such as the local APIC timer) uses profile
level when kernel profiling, a performance measurement mechanism, is enabled. When kernel
profiling is active, the kernel’s profiling trap handler records the address of the code that was
executing when the interrupt occurred. A table of address samples is constructed over time that
tools can extract and analyze. You can obtain Kernrate, a kernel profiling tool that you can use to
configure and view profiling-generated statistics, from the Windows Driver Kit (WDK). See the

Kernrate experiment for more information on using this tool.

m The device IRQLs are used to prioritize device interrupts. (See the previous section for
how hardware interrupt levels are mapped to IRQLs.)

m The correctible machine check interrupt level is used after a serious but correctible (by the
operating system) hardware condition or error was reported by the CPU or firmware.

95

m DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel and
device drivers generate. (DPCs and APCs are explained in more detail later in this chapter.)

m The lowest IRQL, passive level, isn’t really an interrupt level at all; it’s the setting at which
normal thread execution takes place and all interrupts are allowed to occur.

EXPERIMENT: using Kernel Profiler (Kernrate) to Profile execution

You can use the Kernel Profiler tool (Kernrate) to enable the system profiling timer, collect
samples of the code that is executing when the timer fires, and display a summary showing the
frequency distribution across image files and functions. It can be used to track CPU usage
consumed by individual processes and/or time spent in kernel mode independent of processes (for
example, interrupt service routines). Kernel profiling is useful when you want to obtain a

breakdown of where the system is spending time.

In its simplest form, Kernrate samples where time has been spent in each kernel module (for
example, Ntoskrnl, drivers, and so on). For example, after installing the Windows Driver Kit, try
performing the following steps:

1. Open a command prompt.
2. Type cd c:\winddk\6001\tools\other\.
3. Type dir. (You will see directories for each platform.)

4. Run the image that matches your platform (with no arguments or switches). For example,
i386\kernrate.exe is the image for an x86 system.

5. While Kernrate is running, go perform some other activity on the system. For example, run
Windows Media Player and play some music, run a graphicsintensive game, or perform network
activity such as doing a directory of a remote network share.

6. Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics from the
sampling period.

In the sample output from Kernrate, Windows Media Player was running, playing a recorded

movie from disk.

C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate._exe
/ \

< KERNRATE LOG >

\ /

Date: 2008/03/09 Time: 16:44:24

Machine Name: ALEX-LAPTOP

Number of Processors: 2
PROCESSOR_ARCHITECTURE: x86
PROCESSOR_LEVEL: 6
PROCESSOR_REVISION: 0f06
Physical Memory: 3310 MB
Pagefile Total: 7285 MB
Virtual Total: 2047 MB

© 0 N o 0o b~ WON P

e e e
w N B O

96

14. PageFilel: \??\C:\pagefile.sys, 4100MB

15. 0S Version: 6.0 Build 6000 Service-Pack: 0.0

16. WinDir: C:\Windows

17. Kernrate Executable Location: C:\PROGRAMMING\DDK\TOOLS\OTHER\I1386

18. Kernrate User-Specified Command Line:

19. c:\Programming\ddk\tools\other\i386\kernrate.exe

20. Kernel Profile (PID = 0): Source= Time,

21. Using Kernrate Default Rate of 25000 events/hit

22. Starting to collect profile data

23. ***> Press ctrl-c to finish collecting profile data

24 ===> Finished Collecting Data, Starting to Process Results

25, e Overall Summary:---——-—————————

26. PO K 0:00:00.000 (0.0%) U 0:00:00-234 (4.7%) 1 0:00:04.789 (95.3%)

27. DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)

28. Interrupts= 9254, Interrupt Rate= 1842/sec.

29. P1 K 0:00:00.031 (0.6%) U 0:00:00-140 (2-8%) 1 0:00:04.851 (96.6%)

30. DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)

31. Interrupts= 7051, Interrupt Rate= 1404/sec.

32. TOTAL K 0:00:00.031 (0.3%) U 0:00:00.374 (3-7%) 1 0:00:09.640
96.0%)

33. DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)

34. Total Interrupts= 16305, Total Interrupt Rate= 3246/sec.

35. Total Profile Time = 5023 msec

36. BytesStart BytesStop BytesDiff.

37. Available Physical Memory , 1716359168, 1716195328, -163840

38. Available Pagefile(s) , 5973733376, 5972783104, -950272

39. Available Virtual , 2122145792, 2122145792, 0O

40. Available Extended Virtual , 0, 0, O

41. Committed Memory Bytes , 1665404928, 1666355200, 950272

42. Non Paged Pool Usage Bytes , 66211840, 66211840, O

43. Paged Pool Usage Bytes , 189083648, 189087744, 4096

44 . Paged Pool Available Bytes , 150593536, 150593536, O

45 . Free System PTEs , 37322, 37322, O

46. Total Avg. Rate

47 . Context Switches , 30152, 6003/sec.

48. System Calls , 110807, 22059/sec.

49. Page Faults , 226, 45/sec.

50. 1/0 Read Operations , 730, 145/sec.

51. 1/0 Write Operations , 1038, 207/sec.

52. 1/0 Other Operations , 858, 171/sec.

53. 1/0 Read Bytes , 2013850, 2759/ 1/0

54. 1/0 Write Bytes , 28212, 27/ 1/0

55. 1/0 Other Bytes , 19902, 23/ 1/0

5%6. --—-——-------—e -—-—"—-"—"""-

97

57.
58.
59.
60.

61.
62.
63.
64 .
65.
66.
67.
68.
69.
70.
71.

Results for Kernel Mode:

OutputResults: KernelModuleCount = 167
Percentage in the following table is based on the Total Hits for the
Kernel

Time 3814 hits, 25000 events per hit --—---—-
Module Hits msec %Total Events/Sec

NTKRNLPA 3768 5036 98 % 18705321

NVLDDMKM 12 5036 0 % 59571

HAL 12 5036 0 % 59571

WIN32K 10 5037 O % 49632

DXGKRNL 9 5036 O % 44678

NETW4V32 2 5036 0 % 9928

FLTMGR 1 5036 0 % 4964

END OF RUN
NORMAL END OF RUN

The overall summary shows that the system spent 0.3 percent of the time in kernel mode, 3.7

percent in user mode, 96.0 percent idle, 0.0 percent at DPC level, and 0.0 percent at interrupt level.

The module with the highest hit rate was Ntkrnlpa.exe, the kernel for machines with Physical
Address Extension (PAE) or NX support. The module with the second highest hit rate was
nvlddmkm.sys, the driver for the video card on the machine used for the test. This makes sense

because the major activity going on in the system was Windows Media Player sending video I/O

to the video driver.

If you have symbols available, you can zoom in on individual modules and see the time spent

by function name. For example, profiling the system while rapidly dragging a window around the

screen resulted in the following (partial) output:

1.

9.

C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate.exe -z n

tkrnlpa -z
win32k

/

< KERNRATE LOG >

\

/

Date:

2008703709 Time: 16:49:56

Time 4191 hits, 25000 events per hit -——————-
Module Hits msec %Total Events/Sec

NTKRNLPA 3623 5695 86 % 15904302

10. WIN32K 303 5696 7 % 1329880

11. INTELPPM 141 5696 3 % 618855

12. HAL 61 5695 1 % 267778

13.CDD 30 5696 0 % 131671

14. NVLDDMKM 13 5696 0 % 57057

Zoomed modulle WIN32K.SYS (Bucket size = 16 bytes, Rounding Down)

16. Module Hits msec %Total Events/Sec

98

17. BltLnkReadPat 34 5696 10 % 149227

18. memmove 21 5696 6 % 92169

19. vSrcTranCopyS8D32 17 5696 5 % 74613

20. memcpy 12 5696 3 % 52668

21_. RGNOBJ: :bMerge 10 5696 3 % 43890

22 _ HANDLELOCK: :vLockHandle 8 5696 2 % 35112
23, ————- Zoomed module NTKRNLPA_EXE (Bucket size = 16 bytes, Rounding Down)
24 _Module Hits msec %Total Events/Sec
25_KildleLoop 3288 5695 87 % 14433713

26. READ_REGISTER_USHORT 95 5695 2 % 417032
27 . READ_REGISTER_ULONG 93 5695 2 % 408252
28_ RtlIFillMemoryUlong 31 5695 0 % 136084
29_ KiFastCallEntry 18 5695 0 % 79016

The module with the second hit rate was Win32k.sys, the windowing system driver. Also
high on the list were the video driver and Cdd.dll, a global video driver used for the
3D-accelerated Aero desktop theme. These results make sense because the main activity in the
system was drawing on the screen. Note that in the zoomed display for Win32k.sys, the functions
with the highest hits are related to merging, copying, and moving bits, the main GDI operations

for painting a window dragged on the screen.

One important restriction on code running at DPC/dispatch level or above is that it can’t wait
for an object if doing so would necessitate the scheduler to select another thread to execute, which
is an illegal operation because the scheduler synchronizes its data structures at DPC/ dispatch level
and cannot therefore be invoked to perform a reschedule. Another restriction is that only nonpaged
memory can be accessed at IRQL DPC/dispatch level or higher.

This rule is actually a side-effect of the first restriction because attempting to access memory
that isn’t resident results in a page fault. When a page fault occurs, the memory manager initiates a
disk I/0 and then needs to wait for the file system driver to read the page in from disk. This wait
would in turn require the scheduler to perform a context switch (perhaps to the idle thread if no
user thread is waiting to run), thus violating the rule that the scheduler can’t be invoked (because
the IRQL is still DPC/dispatch level or higher at the time of the disk read).

If either of these two restrictions 1is violated, the system crashes with an
IRQL NOT LESS OR EQUAL or a DRIVER IRQL NOT LESS OR EQUAL crash code.
(See Chapter 14 for a thorough discussion of system crashes.) Violating these restrictions is a
common bug in device drivers. The Windows Driver Verifier, explained in the section “Driver

Verifier” in Chapter 9, has an option you can set to assist in finding this particular type of bug.

Interrupt Objects The kernel provides a portable mechanism—a kernel control object called
an interrupt object—that allows device drivers to register ISRs for their devices. An interrupt
object contains all the information the kernel needs to associate a device ISR with a particular
level of interrupt, including the address of the ISR, the IRQL at which the device interrupts, and
the entry in the kernel’s IDT with which the ISR should be associated. When an interrupt object is

initialized, a few instructions of assembly language code, called the dispatch code, are copied

99

from an interrupt handling template, KilnterruptTemplate, and stored in the object. When an
interrupt occurs, this code is executed.

This interrupt-object resident code calls the real interrupt dispatcher, which is typically either
the kernel’s KilnterruptDispatch or KiChainedDispatch routine, passing it a pointer to the
interrupt object. KilnterruptDispatch is the routine used for interrupt vectors for which only one
interrupt object is registered, and KiChainedDispatch is for vectors shared among multiple
interrupt objects. The interrupt object contains information this second dispatcher routine needs to
locate and properly call the ISR the device driver provides.

The interrupt object also stores the IRQL associated with the interrupt so that
Kilnterrupt-Dispatch or KiChainedDispatch can raise the IRQL to the correct level before calling
the ISR and then lower the IRQL after the ISR has returned. This two-step process is required
because there’s no way to pass a pointer to the interrupt object (or any other argument for that
matter) on the initial dispatch because the initial dispatch is done by hardware. On a
multiprocessor system, the kernel allocates and initializes an interrupt object for each CPU,
enabling the local APIC on that CPU to accept the particular interrupt.

Another kernel interrupt handler is KiFloatingDispatch, which is used for interrupts that
require saving the floating-point state. Unlike kernel-mode code, which typically is not allowed to
use floating-point (MMX, SSE, 3DNow!) operations because these registers won’t be saved across
context switches, ISRs might need to use these registers (such as the video card ISR performing a
quick drawing operation). When connecting an interrupt, drivers can set the FloatingSave
argument to TRUE, requesting that the kernel use the floating-point dispatch routine, which will
save the floating registers. (However, this will greatly increase interrupt latency.) Note that this is

supported only on 32-bit systems.

100

Peripheral Device

Controller Controller
n
CPU Interrupt
Dispatch Table
ISR Address E— Read from device
Raise IRQL
Spinlock
P Grab SFWUCV Acknowledge-
Dispatch Interrupt
Code
Drop Spinlock
Interrupt Request DPC
Object Lower [RQL
KilnterruptDispatch Driver ISR

FIGURE 3-6 Typical interrupt control flow
EXPERIMENT: examining interrupt internals

Using the kernel debugger, you can view details of an interrupt object, including its IRQL,
ISR address, and custom interrupt dispatching code. First, execute the !idt command and locate
the entry that includes a reference to 18042KeyboardInterruptService, the ISR routine for the PS2
keyboard device:

1. 81: 89237050 i8042prt!18042KeyboardiInterruptService (KINTERRUPT 89237000)
To view the contents of the interrupt object associated with the interrupt, execute dt

nt! kinterrupt with the address following KINTERRUPT:

lkd> dt nt!_KINTERRUPT 89237000

+0x000 Type : 22

+0x002 Size : 624

+0x004 InterruptListEntry : _LIST_ENTRY [0x89237004 - 0x89237004]

+0x00c ServiceRoutine : 0x8f60el5c unsigned char

i18042prt! 18042KeyboardInterruptService+0

+0x010 MessageServiceRoutine : (null)

0 N o o b~ W N PP

+0x014 Messagelndex : 0O

101

9. +0x018 ServiceContext : 0x87c707a0

10. +0x01c SpinLock : O

11. +0x020 TickCount : OXFFFFFFFT

12. +0x024 ActuallLock : 0x87c70860 -> O

13. +0x028 DispatchAddress : 0x82090b40 void nt!KilnterruptDispatch+0
14. +0x02c Vector : 0x81

15. +0x030 Irql : Ox7 **

16. +0x031 Synchronizelrql : Ox8 ="

17. +0x032 FloatingSave : 0 **

18. +0x033 Connected : Ox1 "~

19. +0x034 Number : 0 **

20. +0x035 SharevVector : 0 **

21.+0x038 Mode : 1 (Latched)

22_+0x03c Polarity : O (InterruptPolarityUnknown)
23. +0x040 ServiceCount : O

24 _ +0x044 DispatchCount : OxFFFFFfff

25. +0x048 Rsvdl : O

26. +0x050 DispatchCode : [135] 0x56535554

In this example, the IRQL that Windows assigned to the interrupt is 7. Because this output is
from an APIC system, the only way to verify the IRQ is to open the Device Manager (on the
Hardware tab in the System item in Control Panel), locate the PS/2 keyboard device, and view its

resource assignments, as shown in the following screen shot:

 Standard PS/E Kewhoard Properties =
| Geresal | Diivir | Detals | Aesources

Stendard P52 Feyboard

Hesounce settings:

Resoirce bpe Sethng =

W 170 Rarge COG - 0GR
i ro 00000001 [01) E |

Settrgbazad o | Coprent corfiguralion

Jsm aulomatic selling Cherige S&lirg

LCerflicting deviee sk

M eaniliek: i

O Cancel |

102

On an x64 or [A64 system you will see that the IRQ is the interrupt vector number
(0x81—129 decimal—in this example) divided by 16 minus 1.

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is
what lidt displays in its output), and the interrupt code that actually executes when an interrupt
occurs is stored in the DispatchCode array at the end of the interrupt object. The interrupt code
stored there is programmed to build the trap frame on the stack and then call the function stored in
the DispatchAddress field (KilnterruptDispatch in the example), passing it a pointer to the

interrupt object.
Windows and real-Time Processing

Deadline requirements, either hard or soft, characterize real-time environments. Hard
real-time systems (for example, a nuclear power plant control system) have deadlines that the
system must meet to avoid catastrophic failures such as loss of equipment or life. Soft real-time
systems (for example, a car’s fuel-economy optimization system) have deadlines that the system
can miss, but timeliness is still a desirable trait. In realtime systems, computers have sensor input
devices and control output devices. The designer of a real-time computer system must know
worst-case delays between the time an input device generates an interrupt and the time the
device’s driver can control the output device to respond. This worst-case analysis must take into
account the delays the operating system introduces as well as the delays the application and device

drivers impose.

Because Windows doesn’t prioritize device IRQs in any controllable way and userlevel
applications execute only when a processor’s IRQL is at passive level, Windows isn’t always
suitable as a real-time operating system. The system’s devices and device drivers—not
Windows—ultimately determine the worst-case delay. This factor becomes a problem when the
real-time system’s designer uses off-the-shelf hardware. The designer can have difficulty
determining how long every off-the-shelf device’s ISR or DPC might take in the worst case. Even
after testing, the designer can’t guarantee that a special case in a live system won’t cause the
system to miss an important deadline. Furthermore, the sum of all the delays a system’s DPCs and

ISRs can introduce usually far exceeds the tolerance of a time-sensitive system.

Although many types of embedded systems (for example, printers and automotive computers)
have real-time requirements, Windows Embedded Standard doesn’t have real-time characteristics.
It is simply a version of Windows XP that makes it possible, using system-designer technology
that Microsoft licensed from VenturCom (formerly Ardence and now part of IntervalZero), to
produce small-footprint versions of Windows XP suitable for running on devices with limited
resources. For example, a device that has no networking capability would omit all the Windows
XP components related to networking, including network management tools and adapter and
protocol stack device drivers.

Still, there are third-party vendors that supply real-time kernels for Windows. The approach
these vendors take is to embed their real-time kernel in a custom HAL and to have Windows run
as a task in the real-time operating system. The task running Windows serves as the user interface
to the system and has a lower priority than the tasks responsible for managing the device. See

103

IntervalZero’s Web site, www.intervalzero.com, for an example of a third-party real-time kernel

extension for Windows.

Associating an ISR with a particular level of interrupt is called connecting an interrupt object,
and dissociating an ISR from an IDT entry is called disconnecting an interrupt object. These
operations, accomplished by calling the kernel functions IoConnectlnterrupt and
IoDisconnectInterrupt, allow a device driver to “turn on” an ISR when the driver is loaded into the
system and to “turn off” the ISR if the driver is unloaded.

Using the interrupt object to register an ISR prevents device drivers from fiddling directly
with interrupt hardware (which differs among processor architectures) and from needing to know
any details about the IDT. This kernel feature aids in creating portable device drivers because it
eliminates the need to code in assembly language or to reflect processor differences in device
drivers.

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel can
synchronize the execution of the ISR with other parts of a device driver that might share data with

the ISR. (See Chapter 7 for more information about how device drivers respond to interrupts.)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any
interrupt level. If multiple device drivers create interrupt objects and connect them to the same
IDT entry, the interrupt dispatcher calls each routine when an interrupt occurs at the specified
interrupt line. This capability allows the kernel to easily support “daisy-chain” configurations, in
which several devices share the same interrupt line. The chain breaks when one of the ISRs claims
ownership for the interrupt by returning a status to the interrupt dispatcher.

If multiple devices sharing the same interrupt require service at the same time, devices not
acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher has
lowered the IRQL. Chaining is permitted only if all the device drivers wanting to use the same
interrupt indicate to the kernel that they can share the interrupt; if they can’t, the Plug and Play
manager reorganizes their interrupt assignments to ensure that it honors the sharing requirements
of each. If the interrupt vector is shared, the interrupt object invokes KiChainedDispatch, which
will invoke the ISRs of each registered interrupt object in turn until one of them claims the
interrupt or all have been executed. In the earlier sample !idt output, vector Oxa2 is connected to
several chained interrupt objects.

Even though connecting and disconnecting interrupts in previous versions of Windows was a
portable operation that abstracted much of the internal system functionality from the developer, it
still required a great deal of information from the device driver developer, which could result in
anything from subtle bugs to hardware damage should these parameters be input improperly. As
part of the many enhancements to the interrupt mechanisms in the kernel and HAL, Windows
Vista introduced a new API, loConnectInterruptEx, that added support for more advanced types of
interrupts (called message-based interrupts) and enhanced the current support for standard
interrupts (also called line-based interrupts). The new loConnectInterruptEx API also takes fewer
parameters than its predecessor. Notably missing are the vector (interrupt number), IRQL, affinity,
and edge versus level-trigged parameters.

Software Interrupts

104

Although hardware generates most interrupts, the Windows kernel also generates software
interrupts for a variety of tasks, including these:

m [nitiating thread dispatching

m Non-time-critical interrupt processing

m Handling timer expiration

m Asynchronously executing a procedure in the context of a particular thread
m Supporting asynchronous I/O operations

These tasks are described in the following subsections. Dispatch or Deferred Procedure Call
(DPC) Interrupts When a thread can no longer continue executing, perhaps because it has
terminated or because it voluntarily enters a wait state, the kernel calls the dispatcher directly to
effect an immediate context switch. Sometimes, however, the kernel detects that rescheduling
should occur when it is deep within many layers of code. In this situation, the kernel requests
dispatching but defers its occurrence until it completes its current activity. Using a DPC software
interrupt is a convenient way to achieve this delay.

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs
to synchronize access to shared kernel structures. This disables additional software interrupts and
thread dispatching. When the kernel detects that dispatching should occur, it requests a
DPC/dispatch-level interrupt; but because the IRQL is at or above that level, the processor holds
the interrupt in check. When the kernel completes its current activity, it sees that it’s going to
lower the IRQL below DPC/dispatch level and checks to see whether any dispatch interrupts are
pending. If there are, the IRQL drops to DPC/dispatch level and the dispatch interrupts are
processed. Activating the thread dispatcher by using a software interrupt is a way to defer
dispatching until conditions are right. However, Windows uses software interrupts to defer other

types of processing as well.

In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs) at
this IRQL. A DPC is a function that performs a system task—a task that is less time-critical than
the current one. The functions are called deferred because they might not execute immediately.

DPCs provide the operating system with the capability to generate an interrupt and execute a
system function in kernel mode. The kernel uses DPCs to process timer expiration (and release
threads waiting for the timers) and to reschedule the processor after a thread’s quantum expires.
Device drivers use DPCs to complete 1/O requests. To provide timely service for hardware
interrupts, Windows—with the cooperation of device drivers—attempts to keep

the IRQL below device IRQL levels. One way that this goal is achieved is for device driver
ISRs to perform the minimal work necessary to acknowledge their device, save volatile interrupt
state, and defer data transfer or other less time-critical interrupt processing activity for execution
in a DPC at DPC/dispatch IRQL. (See Chapter 7 for more information on DPCs and the I/O
system.)

A DPC is represented by a DPC object, a kernel control object that is not visible to

user-mode programs but is visible to device drivers and other system code. The most important

105

piece of information the DPC object contains is the address of the system function that the kernel
will call when it processes the DPC interrupt. DPC routines that are waiting to execute are stored
in kernel-managed queues, one per processor, called DPC queues. To request a DPC, system code
calls the kernel to initialize a DPC object and then places it in a DPC queue.

By default, the kernel places DPC objects at the end of the DPC queue of the processor on
which the DPC was requested (typically the processor on which the ISR executed). A device
driver can override this behavior, however, by specifying a DPC priority (low, medium, or high,
where medium is the default) and by targeting the DPC at a particular processor. A DPC aimed at
a specific CPU is known as a targeted DPC. If the DPC has a low or medium priority, the kernel
places the DPC object at the end of the queue; if the DPC has a high priority, the kernel inserts the
DPC object at the front of the queue.

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher
to a lower IRQL (APC or passive level), the kernel processes DPCs. Windows ensures that the
IRQL remains at DPC/dispatch level and pulls DPC objects off the current processor’s queue until
the queue is empty (that is, the kernel “drains” the queue), calling each DPC function in turn. Only
when the queue is empty will the kernel let the IRQL drop below DPC/dispatch level and let
regular thread execution continue. DPC processing is depicted in Figure 3-7. DPC priorities can
affect system behavior another way. The kernel usually initiates DPC queue draining with a
DPC/dispatch-level interrupt. The kernel generates such an interrupt only if the DPC is directed at
the processor the ISR is requested on and the DPC has a high or medium priority. If the DPC has a
low priority, the kernel requests the interrupt only if the number of outstanding DPC requests for
the processor rises above a threshold or if the number of DPCs requested on the processor within a

time window is low.

@ A timer expires, and the kernel IRQI;;;‘;IHQ
queues a DPC that will release
any threads waiting on the High
timer. The kernel then Power fallure

recjueasts a software INtarrupt. @ﬁfterthe DPC interrupt

control transfers to the

(thread) dispatcher.
(@ When the IRQL drops below .
DPC/dispatch level, a DPC DPC/dispatch =——1— | Dispatcher

INTErrupt accurs. APC

Passive

DPC DPC
DPC queue

@ The dispatcher executes each DPC routine
in the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.

FIGURE 3-7 Delivering a DPC

106

If a DPC is targeted at a CPU different from the one on which the ISR is running and the
DPC’s priority is high, the kernel immediately signals the target CPU (by sending it a dispatch IPI)
to drain its DPC queue. If the priority is medium or low, the number of DPCs queued on the target
processor must exceed a threshold for the kernel to trigger a DPC/dispatch interrupt. The system
idle thread also drains the DPC queue for the processor it runs on. Although DPC targeting and
priority levels are flexible, device drivers rarely need to change the default behavior of their DPC

objects. Table 3-1 summarizes the situations that initiate DPC queue draining.

TABLE 3-1 DPC Interrupt Generation Rules
DPC Priority ~ DPC Targeted at ISR's Processor DPC Targeted at Another Processor

Low DPC queue length exceeds maximum DPC queue length exceeds maximum
DPC queue length or DPC request rate DPC queue length or system is idle
is less than minimum DPC request rate

Medium Always DPC queue length exceeds maximum
DPC queue length or system is idle

High Always Always

Because user-mode threads execute at low IRQL, the chances are good that a DPC will
interrupt the execution of an ordinary user’s thread. DPC routines execute without regard to hat
thread is running, meaning that when a DPC routine runs, it can’t assume what process address
space is currently mapped. DPC routines can call kernel functions, but they can’t call system
services, generate page faults, or create or wait for dispatcher objects explained later in this
chapter). They can, however, access nonpaged system memory addresses, because system address
space is always mapped regardless of what the current process is. DPCs are provided primarily
for device drivers, but the kernel uses them too. The kernel most frequently uses a DPC to handle
quantum expiration. At every tick of the system clock, an interrupt occurs at clock IRQL. The
clock interrupt handler (running at clock IRQL) updates the system time and then decrements a
counter that tracks how long the current thread has run. When the counter reaches 0, the thread’s
time quantum has expired and the kernel might need to reschedule the processor, a lower-priority
task that should be done at DPC/dispatch IRQL. The clock interrupt handler queues a DPC to
initiate thread dispatching and then finishes its work and lowers the processor’s IRQL. Because
the DPC interrupt has a lower priority than do device interrupts, any pending device interrupts that
surface before the clock interrupt completes are handled before the DPC interrupt occurs.

EXPERIMENT: Listing System Timers

You can use the kernel debugger to dump all the current registered timers on the system, as

well as information on the DPC associated with each timer (if any). See the output below for a

sample:

1. Ikd> !'timer

2. Dump system timers

3. Interrupt time: 437df8b4 00000330 [5/19/2008 15:56:27.044]

4_ List Timer Interrupt Low/High Fire Time DPC/thread

5. 1 886dd6f0 45blecca 00000330 [5/19/2008 15:56:30.739] srv+1005

107

6. 7 884966a8 Oebf5dcb 00001387 [6/08/2008 10:58:03.373] thread 88496620
7. 11 8553b8f8 4f4db783 00000330 [5/19/2008 15:56:46.860] thread 8553b870
8. 85404be0 4f4db783 00000330 [5/19/2008 15:56:46.860] thread 85404b58
9. 16 89alc0a8 a62084ac 00000331 [5/19/2008 16:06:22.022] thread 89alc020
10. 18 8ab02198 ec7a2c4c 00000330 [5/19/2008 16:01:10.554] thread 8ab02110
11. 19 8564aa20 45dae868 00000330 [5/19/2008 15:56:31.008] thread 8564a998
12. 20 86314738 4a9ffc6a 00000330 [5/19/2008 15:56:39.010] thread 863146b0
13.88c21320 4aa0719b 00000330 [5/19/2008 15:56:39.013] thread 88c21298
14. 21 88985e00 4f655e8c 00000330 [5/19/2008 15:56:47.015] thread 88985d78
15. 22 88d00748 542b35e0 00000330 [5/19/2008 15:56:55.022] thread 88d006c0
16. 899764c0 542b35e0 00000330 [5/19/2008 15:56:55.022] thread 89976438
17.861Ff8b70 542b35e0 00000330 [5/19/2008 15:56:55.022] thread 861f8ae8
18. 861e71d8 542b5cf0 00000330 [5/19/2008 15:56:55.023] thread 861e7150
19. 26 8870ee00 45ec1074 00000330 [5/19/2008 15:56:31.120] thread 8870ed78
20. 29 8846e348 4f7a35a4 00000330 [5/19/2008 15:56:47.152] thread 8846e2c0
21.86b8f110 543d1b8c 00000330 [5/19/2008 15:56:55.140] ndis!NdisCancelTimer
22_0Object+aa
23. 38 88a56610 460a2035 00000330 [5/19/2008 15:56:31.317]
afd!AfdTimeoutPoll

In this example, there are three driver-associated timers, due to expire shortly, associated
with the Srv.sys, Ndis.sys, and Afd.sys drivers (all related to networking). Additionally, there are
a dozen or so timers that don’t have any DPC associated with them—this likely indicates
user-mode or kernel-mode timers that are used for wait dispatching. You can use !thread on the
thread pointers to verify this. Because DPCs execute regardless of whichever thread is currently
running on the system (much like interrupts), they are a primary cause for perceived system
unresponsiveness of client systems or workstation workloads because even the highest-priority
thread will be interrupted by a pending DPC. Some DPCs run long enough that users may
perceive video or sound lagging, and even abnormal mouse or keyboard latencies, so for the
benefit of drivers with long-running DPCs, Windows supports threaded DPCs.

Threaded DPCs, as their name implies, function by executing the DPC routine at passive
level on a real-time priority (priority 31) thread. This allows the DPC to preempt most user-mode
threads (because most application threads don’t run at real-time priority ranges), but allows other
interrupts, non-threaded DPCs, APCs, and higher-priority threads to preempt the routine.

The threaded DPC mechanism is enabled by default, but you can disable it by editing the
HKEY LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\Kernel\
ThreadDpcEnable value and setting it to 0. Because threaded DPCs can be disabled, driver
developers who make use of threaded DPCs must write their routines following the same rules as
for non-threaded DPC routines and cannot access paged memory, perform dispatcher waits, or
make assumptions about the IRQL level at which they are executing. In addition, they must not
use the KeAcquire/ReleaseSpinLockAtDpcLevel APIs because the functions assume the CPU is at
dispatch level. Instead, threaded DPCs must use KeAcquire/ReleaseSpinLockForDpc, which

performs the appropriate action after checking the current IRQL.

108

EXPERIMENT:Monitoring interrupt and DPC Activity

You can use Process Explorer to monitor interrupt and DPC activity by adding the Context
Switch Delta column and watching the Interrupt and DPC processes. (See the following screen
shot.) These are not real processes, but they are shown as processes for convenience and therefore
do not incur context switches. Process Explorer’s context switch count for these pseudo processes
reflects the number of occurrences of each within the previous refresh interval. You can stimulate

interrupt and DPC activity by moving the mouse quickly around the screen.

nJ;' Pracess Brplarer - %‘smrnalw.wm:plrbemlli carm [.ﬁlE:—lﬂF'I'ﬂF‘-,Mmmrh'm] = |&|
File DOptlons - Wew Process Aad o Users Help

CBm=Er@Eg . ad N —

Fiopess Ao LR Lomizhlsha Pericien Lempary Hame
Y Sypzinn |dle Progess] F3AE 437 l
I Innnpiz nra 246 Hardwam ntenupls
T 0PC: nea 177 Dalened Fiocadus Cal:
= Y Speden 1 16
CRE TR] 400 i rdowes Sesson Manage Micaanft Coap oslion =

COU Usage: 154% Corarmit Charga: 1652% Procasses: 28 | Theeads: 293 Handlas: 2H1

You can also trace the execution of specific interrupt service routines and deferred procedure

calls with the built-in event tracing support (described later in this chapter).
1. Start capturing events by typing the following command:
tracelog —start —f kernel.etl —dpcisr —usePerfCounter —b 64
2. Stop capturing events by typing:
tracelog —stop
3. Generate reports for the event capture by typing:
tracerpt kernel.etl —report report.html —f html
This will generate a Web page called report.html

4. Open report.html and expand the DPC/ISR subsection. Expand the DPC/ISR Breakdown

area, and you will see summaries of the time spent in ISRs and DPCs by each driver. For example:

109

™ . L e e R i T e,
@C:".Frugnmmrlg'l.ddl:"Jnu|:|'\|:mcing".i!Hﬁ".x|p|:im11tm|-'-I'ITnduMIntu'ne':Ea:ﬂnmr [5|LI'_:'|_@
———. . AR AR NI — - A
U u = '.{ﬁ CWProgremmirgiddivicolsradnghi; « | ¢ [- | | ooy e B -
. — i = n
wd |8 cPogmniningtdditnalidmaing | 5o = 8 = i Pags = () Tealk -

I i} — .
| DPC/ISh R il
[DPCASR Breakdomn & |
DPE pracessar utilizatian Top: 68 of B3 E
Ml Pincagsw Adirgss Percem
| alapoit sys 0 e0722FasD 3
ndis =5 0 EIEETIST 1
tighrnl.ays 0 SFT2E00S 1
R 0 901 80IFE ']
Kpb By 1 901 B0IFE 0§
ushhui gyvs 0 BFFC000S o
Usbpoit mys [l BFS2RER0 o3
HRBRRNG B 0 EZIBCON na
ndi= =y 0 B0EEFiFLC o
BO42prEys 0 BFacdsan, ju)]
dddimbrn. eye 0 EFE404E0 auj |
alapomiteys | GOFS2FAC
iz e | BOB3MCT
dephrnl.svs | BFTIE00S
ughhu.me | BFFC00DA
ushporiays | AF32a5BC
HETETT o] 1 BZIsCs5nd
ndis &S 1 AOGEFIFC
B4 Zpri e | EFACAan
maldelmkmn gye | EFA4LA40D
Cuane M Computer | Prateceed Mode: Off 1w -

Running an In command in the kernel debugger on the address of each event record shows
the name of the function that executed the DPC or ISR:

1. 1kd> In 0x806321C7

2. (806321c7) ndis!IndislInterruptDpc
3. 1kd> In Ox820AED3F

4. (820aed3f) nt!lopTimerDispatch
5. lkd> In 0x82051312

6. (82051312) nt!PpmPerfldleDpc

The first is a DPC queued by a network card NDIS miniport driver. The second is a DPC for
a generic /O timer expiration. The third address is the address of a DPC for an idle performance

operation. For more information, see www.microsoft.com/whdc/driver/perform/mmdrv.mspx.

Asynchronous Procedure Call (APC) Interrupts Asynchronous procedure calls (APCs)
provide a way for user programs and system code to execute in the context of a particular user
thread (and hence a particular process address space). Because APCs are queued to execute in the
context of a particular thread and run at an IRQL less than DPC/dispatch level, they don’t operate
under the same restrictions as a DPC. An APC routine can acquire sources(objects), wait for
object handles, incur page faults, and call system services.

APCs are described by a kernel control object, called an APC object. APCs waiting to
execute reside in a kernel-managed APC queue. Unlike the DPC queue, which is systemwide, the
APC queue is thread-specific—each thread has its own APC queue. When asked to queue an APC,
the kernel inserts it into the queue belonging to the thread that will execute the APC routine. The

110

kernel, in turn, requests a software interrupt at APC level, and when the thread eventually begins
running, it executes the APC.

There are two kinds of APCs: kernel mode and user mode. Kernel-mode APCs don’t require
“permission” from a target thread to run in that thread’s context, while user-mode APCs do.
Kernel-mode APCs interrupt a thread and execute a procedure without the thread’s intervention or
consent. There are also two types of kernel-mode APCs: normal and special. Special APCs
execute at APC level and allow the APC routine to modify some of the APC parameters. Normal
APCs execute at passive level and receive the modified parameters from the special APC routine
(or the original parameters if they weren’t modified). Both normal and special APCs can be
disabled by raising the IRQL to APC level or by calling KeEnterGuardedRegion.
KeEnterGuardedRegion disables APC delivery by setting the SpecialApcDisable field in the
calling thread’s KTHREAD structure (described further in Chapter 5). A thread can disable
normal APCs only by calling KeEnterCriticalRegion, which sets the KernelApcDisable field in
the thread’s KTHREAD structure. Table 3-2 summarizes APC insertion and delivery behavior for
each type of APC. The executive uses kernel-mode APCs to perform operating system work that
must be completed within the address space (in the context) of a particular thread. It can use
special kernel-mode APCs to direct a thread to stop executing an interruptible system service, for
example, or to record the results of an asynchronous I/O operation in a thread’s address space.
Environment subsystems use special kernel-mode APCs to make a thread suspend or terminate
itself or to get or set its user-mode execution context. The POSIX subsystem uses kernel-mode
APCs to emulate the delivery of POSIX signals to POSIX processes.

Another important use of kernel-mode APCs is related to thread suspension and termination.
Because these operations can be initiated from arbitrary threads and be directed to other arbitrary
threads, the kernel uses an APC to query the thread context as well as to terminate the thread.
Device drivers will often block APCs or enter a critical or guarded region to prevent these
operations from occurring while they are holding a lock; otherwise, the lock may never be
released, and the system would hang.

111

TABLE 3-2 APC Insertion and Delivery

APC Type Insertion Behavior Delivery Behavior
Special (kernel) Inserted at the tail of the Delivered at APC level as soon as IRQL drops
kernel-mode APC list. and the thread is not in a guarded region. Given
pointers to arguments specified when inserting
the APC.

Normal (kernel) Inserted right after the last Deliverad at PASSIVE_LEVEL after the associated
special APC (at the head of all special APC was executed. Given arguments

other normal APCs). returned by the associated special APC (may be
the original arguments used during insertion or
new ones).
Normal (user) Inserted at the tail of the Deliverad at PASSIVE_LEVEL as soon as IRQL
user-mode APC list. drops, the thread is not in a critical {or quarded)

region, and the thread is in an alerted state.
Given arguments returned by the associated
special APC (may be the original arguments used
during insertion or new ones).

Marmal (user) Inserted at the head of the Deliverad at PASSIVE_LEVEL on return to user

Thread Exit user-mode APC list. mode, if the thread is doing an alerted user-

(PsExitSpecialApe) mode wait. Given arguments returned by the
thread termination special APC.

Device drivers also use kernel-mode APCs. For example, if an I/O operation is initiated and a
thread goes into a wait state, another thread in another process can be scheduled to run. When the
device finishes transferring data, the I/O system must somehow get back into the context of the
thread that initiated the I/O so that it can copy the results of the I/O operation to the buffer in the
address space of the process containing that thread. The I/O system uses a special kernel-mode
APC to perform this action, unless the application used the SetFileloOverlappedRange API or I/O
completion ports, in which case the buffer will either be global in memory or only copied after the
thread pulls a completion item from the port. (The use of APCs in the I/O system is discussed in
more detail in Chapter 7.)

Several Windows APIs, such as ReadFileEx, WriteFileEx, and QueueUserAPC, use
user-mode APCs. For example, the ReadFileEx and WriteFileEx functions allow the caller to
specify a completion routine to be called when the I/O operation finishes. The I/O completion is
implemented by queuing an APC to the thread that issued the I/O. However, the callback to the
completion routine doesn’t necessarily take place when the APC is queued because usermode
APCs are delivered to a thread only when it’s in an alertable wait state. A thread can enter a wait
state either by waiting for an object handle and specifying that its wait is alertable (with the
Windows WaitForMultipleObjectsEx function) or by testing directly whether it has a pending
APC (using SleepEx). In both cases, if a user-mode APC is pending, the kernel interrupts (alerts)
the thread, transfers control to the APC routine, and resumes the thread’s execution when the APC
routine completes. Unlike kernel-mode APCs, which can execute at APC level, user-mode APCs

execute at passive level.

112

APC delivery can reorder the wait queues—the lists of which threads are waiting for what,
and in what order they are waiting. (Wait resolution is described in the section “Low-IRQL
Synchronization” later in this chapter.) If the thread is in a wait state when an APC is delivered,
after the APC routine completes, the wait is reissued or reexecuted. If the wait still isn’t resolved,
the thread returns to the wait state, but now it will be at the end of the list of objects it’s waiting
for. For example, because APCs are used to suspend a thread from execution, if the thread is
waiting for any objects, its wait will be removed until the thread is resumed, after which that
thread will be at the end of the list of threads waiting to access the objects it was waiting for. A
thread performing an alertable kernel-mode wait will also be woken up during thread termination,
allowing such a thread to check whether it woke up as a result of termination or a different reason.

3.1.2 Exception Dispatching

In contrast to interrupts, which can occur at any time, exceptions are conditions that result
directly from the execution of the program that is running. Windows uses a facility known as
structured exception handling, which allows applications to gain control when exceptions occur.
The application can then fix the condition and return to the place the exception occurred, unwind
the stack (thus terminating execution of the subroutine that raised the exception), or declare back
to the system that the exception isn’t recognized and the system should continue searching for an
exception handler that might process the exception. This section assumes you’re familiar with the
basic concepts behind Windows structured exception handling—if you’re not, you should read the
overview in the Windows API reference documentation in the Windows SDK or Chapters 23
through 25 in Jeffrey Richter’s book Windows via C/C++ (Microsoft Press, 2007) before
proceeding. Keep in mind that although exception handling is made accessible through language
extensions (for example, the try construct in Microsoft Visual C++), it is a system mechanism
and hence isn’t language-specific. Other examples of consumers of Windows exception handling
include C++ and Java exceptions. On the x86 and x64 processors, all exceptions have predefined
interrupt numbers that directly correspond to the entry in the IDT that points to the trap handler for
a particular exception. Table 3-3 shows x86-defined exceptions and their assigned interrupt

numbers.

Because the first entries of the IDT are used for exceptions, hardware interrupts are assigned
entries later in the table, as mentioned earlier. All exceptions, except those simple enough to be
resolved by the trap handler, are serviced by a kernel module called the exception dispatcher. The
exception dispatcher’s job is to find an exception handler that can “dispose of” the exception.
Examples of architectureindependent exceptions that the kernel defines include memory access
violations, integer divide-by-zero, integer overflow, floating-point exceptions, and debugger
breakpoints. For a complete list of architecture-independent exceptions, consult the Windows
SDK reference documentation.

113

TABLE 3-3 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 Debug (Single Step)

2 MNon-Maskable Interrupt (NMI)
3 Breakpoint

4 Overflow

5 Bounds Check

B Invalid Opcode

7 NPX Not Available

8 Double Fault

9 MNPX Segment Overrun
10 Invalid Task State Segment (TSS)
11 Segment Not Present
12 Stack Fault

13 General Protection

14 Page Fault

15 Intel Reserved

16 Floating Point

17 Alignment Check

18 Machine Check

19 5IMD Floating Point

The kernel traps and handles some of these exceptions transparently to user programs. For
example, encountering a breakpoint while executing a program being debugged generates an
exception, which the kernel handles by calling the debugger. The kernel handles certain other

exceptions by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For example, certain
types of memory access violations or an arithmetic overflow generate an exception that the
operating system doesn’t handle. 32-bit applications can establish frame-based exception handlers
to deal with these exceptions. The term frame-based refers to an exception handler’s association
with a particular procedure activation. When a procedure is invoked, a stack frame representing
that activation of the procedure is pushed onto the stack. A stack frame can have one or more
exception handlers associated with it, each of which protects a particular block of code in the
source program. When an exception occurs, the kernel searches for an exception handler
associated with the current stack frame. If none exists, the kernel searches for an exception

114

handler associated with the previous stack frame, and so on, until it finds a frame-based exception
handler. If no exception handler is found, the kernel calls its own default exception handlers.

For 64-bit applications, structured exception handling does not use frame-based handlers.
Instead, a table of handlers for each function is built into the image during compilation. The kernel
looks for handlers associated with each function and generally follows the same algorithm we’ve
described for 32-bit code. Structured exception handling is heavily used within the kernel itself so
that it can safely verify whether pointers from user mode can be safely accessed for read or write
access. Drivers can make use of this same technique when dealing with pointers sent during I/O
control codes (IOCTLs). Another mechanism of exception handling is called vectored exception
handling. This method can only be used by user-mode applications. You can find more
information about it in the Windows SDK or the MSDN Library.

When an exception occurs, whether it is explicitly raised by software or implicitly raised by
hardware, a chain of events begins in the kernel. The CPU hardware transfers control to the kernel
trap handler, which creates a trap frame (as it does when an interrupt occurs). The trap frame
allows the system to resume where it left off if the exception is resolved. The trap handler also
creates an exception record that contains the reason for the exception and other pertinent
information.

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to
locate a frame-based exception handler that will handle the exception. Because unhandled
kernel-mode exceptions are considered fatal operating system errors, you can assume that the
dispatcher always finds an exception handler. Some traps, however, do not lead into an exception
handler because the kernel always assumes such errors to be fatal—these are errors that could
have been caused only by severe bugs in the internal kernel code or by major inconsistencies in
driver code (that could have only occurred through deliberate lowlevel system modifications that
drivers should not be responsible for). Such fatal errors will result in a bug check with the
UNEXPECTED_KERNEL MODE TRAP code.

If the exception occurred in user mode, the exception dispatcher does something more
elaborate. As you’ll see in Chapter 5, the Windows subsystem has a debugger port (this is actually
a debugger object, which will be discussed later) and an exception port to receive notification of
user-mode exceptions in Windows processes. (In this case, by “port” we mean an LPC port object,
which will be discussed later in this chapter.) The kernel uses these ports in its default exception
handling, as illustrated in Figure 3-8.

Debugger breakpoints are common sources of exceptions. Therefore, the first action the
exception dispatcher takes is to see whether the process that incurred the exception has an
associated debugger process. If it does, the exception dispatcher sends a debugger object message
to the debug object associated with the process (which internally the system refers to as a port for
compatibility with programs that might rely on behavior in Windows 2000,which used an LPC
port instead of a debug object).

115

Debugger Debugger
port ifirst chance)
Trap
handler
_ i Frame-based
Exception Gt handlers
record -
Exception , Debugger Debugger
dispatcher port (second chance)
Exception Environment
port subsystem
T "~~~ | xernel defaunt
ALPC handler

FIGURE 3-8 Dispatching an exception

If the process has no debugger process attached, or if the debugger doesn’t handle the
exception, the exception dispatcher switches into user mode, copies the trap frame to the user
stack formatted as a CONTEXT data structure (documented in the Windows SDK), and calls a
routine to find a structured or vectored exception handler. If none is found, or if none handles the
exception, the exception dispatcher switches back into kernel mode and calls the debugger again
to allow the user to do more debugging. (This is called the second-chance notification.)

If the debugger isn’t running and no user-mode exception handlers are found, the kernel
sends a message to the exception port associated with the thread’s process. This exception port, if
one exists, was registered by the environment subsystem that controls this thread. The exception
port gives the environment subsystem, which presumably is listening at the port, the opportunity
to translate the exception into an environment-specific signal or exception.Csrss (Client/Server
Run-Time Subsystem) uses this signal for Windows Error Reporting (WER)—which will be
discussed shortly—and when POSIX gets a message from the kernel that one of its threads
generated an exception, the POSIX subsystem sends a POSIX-style signal to the thread that
caused the exception. However, if the kernel progresses this far in processing the exception and
the subsystem doesn’t handle the exception, the kernel executes a default exception handler that
simply terminates the process whose thread caused the exception.

Unhandled Exceptions

All Windows threads have an exception handler that processes unhandled exceptions. This
exception handler is declared in the internal Windows start-of-thread function. The startof-thread
function runs when a user creates a process or any additional threads. It calls
theenvironment-supplied thread start routine specified in the initial thread context structure, which
in turn calls the user-supplied thread start routine specified in the CreateThread call.

116

EXPERIMENT: Viewing the real user Start Address for Windows Threads

The fact that each Windows thread begins execution in a system-supplied function (and not

the user-supplied function) explains why the start address for thread 0 is the same for every

Windows process in the system (and why the start addresses for secondary threads are also the

same). To see the user-supplied function address, use Process Explorer or the kernel debugger.

Because most threads in Windows processes start at one of the system-supplied wrapper

functions, Process Explorer, when displaying the start address of threads in a process, skips the

initial call frame that represents the wrapper function and instead shows the second frame on the

stack. For example, notice the thread start address of a process running Notepad.exe:

e

‘jf n utepa.'l:‘l Ebcklﬂéﬁ Pro pe rties

1cRe | searty | Enewormens | srings
Irage I Pz rFoemance: | Perfarmance Gragh | Threads
Couank; 1

TID |GPLY Cyoks Delta | Staithdress

motenad exelWintanCRT Statup

‘|

b

Thraad [D:
Skt Tine:
Skate:
Ketnzl Time:

Lizer Time:

Cyrles:

Conb=xt Swicches:

20z [stack Module |
F 3659 FM SIL4i2006
Waiki'WrUserRzguest Bass Prioeity: =}
0:00:00.078 Crenamnic Prioriby: 10
[eoceo0.0ts 10 Prioeity: Marmal
aol Memory Frioriy; 5]
332,635,516
Permissions] [kil Suspend]
[oK] Cancel

] i

g

Process Explorer does display the complete call hierarchy when it displays the call stack.

Notice the following results when the Stack button is clicked:

117

r - ._'
| 5] Stack Forthread 242 (]

0 ntkmipaess wapContes eI
ntkripa exslkiSwapT hrzad+0=441
ritkmipa exzlkevaiF orsingleObiect+0:432
ntkmipaesalkiS uzpendl hraads041E

ntkmipa exskiD elverdpo+l 38

ntkripa exslkibwapT hread+ 072

ntkripa exzlbew/aiFar inglObject+0-432
wind2k. syslweF ealSlesnT hread+0yl 2d
wind2h. eyl leepT hroad 0024

windzk. syst e ealintemalGet exseoe+Dadad
wind2k. oyl M zb ethdes sage+Du 3t
nthmipaesskiFastCalErirp+0:12a

ntdiL AINEF asts petemCalA et

USERZI2 AN serGatM eszage+ Oz
USER 32 dllGeM eszageiy' +0x33

nctepad exel Wik ain-Orec

nokepad exe_initem_s+0i1a1

kernal32 dllBaseThreadini Thunkslxe
ntdiLdi! At z=ThreadStat-0-23

19 ntdiLdil_RELU cer ThreadStat+0s b

Lopy | 0k

L - I R

—_ a4 e
L= =T B R & 5 B R R ¥ R R =]

Line 18 in the preceding screen shot is the first frame on the stack—the start of the internal

thread wrapper. The second frame (line 17) is the environment subsystem’s thread wrapper, in this

case kernel32, because we are dealing with a Windows subsystem application. The third frame

(line 16) is the main entry point into Notepad.exe.

4.
5.

6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

The generic code for the internal thread start functions is shown here:

VOID RtlUserThreadStart(VOID){

LPVOID IpStartAddr = (R/E)AX; // Located in the initial thread context
structure

LPVOID IpvThreadParm = (R/E)BX; // Located in the initial thread context
structure

LPVOID IpWin32StartAddr;

IpWin32StartAddr = Kernel32ThreadlnitThunkFunction ?
Kernel32ThreadInitThunkFunction :

IpStartAddr;

_try {

DWORD dwThreadExitCode = IpWin32StartAddr(lpvThreadParm);
RtlExitUserThread(dwThreadExitCode) ;

} _ except(RtlUnhandledExceptionFilter(

GetExceptionInformation())) {

RtlExitUserProcess(GetExceptionCode());

}

}
void Win32StartOfProcess(

LPTHREAD_START_ROUTINE IpStartAddr,

118

17. LPVOID IpvThreadParm){
18. IpStartAddr(IpvThreadParm) ;
19.}

Notice that the Windows unhandled exception filter is called if the thread has an exception
that it doesn’t handle. The purpose of this function is to provide the system-defined behavior for
what to do when an exception is not handled, which is based on the contents of the
HKLM\SOFTWAREWMicrosoft\Windows NT\CurrentVersion\AeDebug registry key and on
whether the process is on the exclusion list. There are two important values: Auto and Debugger.
Auto tells the unhandled exception filter whether to automatically run the debugger or ask the user
what to do. Installing development tools, such as Microsoft Visual Studio, will change this value
to 0. The Debugger value is a string that points to the path of the debugger executable to run in the

case of an unhandled exception.

Windows Error Reporting

Windows Error Reporting (WER) is a sophisticated mechanism that automates the
submission of both user-mode process crashes as well as kernel-mode system crashes. (For a
description of how this applies to system crashes, see Chapter 14.) Windows Error Reporting can
be configured by going to Control Panel, choosing Problem Reports And Solutions, and then
Change Settings. (See Figure 3-9.) Alternatively, you can launch the Wercon.exe application from

a command prompt or by using Start, Run.

= o =
@ E% Problem Reports and Solutions
“
Advanced settings for problem reporting
Far my programs, problem reporting is:
@ 0n
o off
For all users and programs, preblem reporting is s=t to: Allow each user to choose settings
[Change setting
Far all users, Windows ic cet to: Allow each user to choose reporting settings
Sending sdditicnal information =
T | Awtomatically send more information i it is needed to help sohve problems
What irfommation is sent?
Flead owr privacy statement enling
Block list
Don't send information about the following programs:
'_-frll =
ok][canes

119

When an unhandled exception is caught by the unhandled exception filter (described in the
previous section), it builds context information (such as the current value of the registers and stack)
and opens an LPC port connection to the WER service. This service will begin to analyze the
crashed program’s state and perform the appropriate actions to notify the user. In most cases, this
means launching the WerFault.exe program, which executes with the current

user’s credentials and displays a message box informing the user of the crash, as shown in
Figure 3-10. (The figure shows the Accvio.exe program, downloadable from the book home page
on Windows Sysinternals, www.microsoft.com/technet/sysinternals.) On systems where a

debugger is installed, an additional option to debug the process will be shown. When you click the
Debug button, the debugger (registered in the Debugger string described earlier in the AeDebug
key) will be launched so it can attach to the crashing process.

On default configured systems, an error report (a minidump and an XML file with various
details, such as the DLL version numbers loaded in the process) is sent to Microsoft’s online crash
analysis server. Eventually, as the service is notified of a solution for a problem, it will display a
tooltip to the user informing her of steps that should be taken to solve the problem. An entry will
also be displayed in the Problem Reports And Solutions configuration dialogbox. By clicking on
the tooltip, or the link under the configuration dialog box, WER displays a solution pane, as
shown in Figure 3-11.

In environments where systems are not connected to the Internet or where the administrator
wants to control which error reports are submitted to Microsoft, the destination for the error report
can be configured to be an internal file server. Microsoft provides to qualified customers a tool set,
called Microsoft Systems Center 2007, that understands the directory structure created by
Windows Error Reporting and provides the administrator with the option to take selective error

reports and submit them to Microsoft.

120

o [
@ KU Problem eports and Solutions

Download updates for Accvio —

This problem was caused by Acevio, which was crezted by David Solomon Expert Seminars, Inc..

Solution

o anling to the David Soloman Expert Seminars, Inc. website o downlozd the Accvio upd ate:
= David Solomon Expert Seminars, Inc,

W as this information helpful? " ag T g ™ comewhat

u

1| Ll b

3 Aieke for help dgabPrint this selution See refated problems

Until Windows Vista, all the operations we’ve described had to occur within the crashing
thread’s context; that is to say, as part of the unhandled exception filter that was initially set up. In
certain types of crashes, these complex operations became impossible for a badly damaged thread
to perform, so the unhandled exception filter itself crashed. This “silent process death” was not
logged anywhere, which made it hard to debug and also resulted in invisible crashes in cases
where no user was present on the machine. (This also meant that services or applications could
crash on servers without any trace.) Windows Vista and later versions improved the WER
mechanism by performing this work externally from the crashed thread, if the unhandled
exception filter itself crashes.

WER contains many customizable settings that can be configured by the user through the
Group Policy editor or by manually making changes to the registry. Table 3-4 lists the WER
registry configuration options, their use, and possible values. These values are located under the
HKLM\SOFTWAREMicrosoft\Windows\Windows Error Reporting subkey for computer
configuration and in the equivalent path under HKEY CURRENT USER for per-user
configuration.

121

TABLE 3-4 WER Registry Settings

S=tting
Configuredmchive
Corsant' DefaultZonsent

Corseant
DefaultCreerridaBahavior

CorsantyuMuginfi anme
CorporateVWER Directony

CorporateVWeR Port-
Mumber

Corporate'WERServer

CorporateVWEeR Lsa-
Authentication

Corporate’VW'ER UlsaS5L

DebugApplicaticns,
Exelanme

DisableAchive
Disabled
DisableCu aus

DontShow U
DontsendAdditionalData

Excludeds p plicationsy
Appi ame
Forceusaus

LacalCum psh Dump-
Folcer

LocalDum ps BumptCount

LocalCum ps DumpTyps=

Setting

Livcal Lo prsh
CustomDumpFlags

Lavgaing Disakled
Mz rechivel ount

MamCueuaCaunt
CueuePasterintarval

Meaning
Caomtents of archived data

W hat kind of data should require
conssnt

W hether the DefaultConsent
owverrides WER plug-in consent
wvaluas

Consent valua for a gpecific WER
plug-in

Ciirectory for a corporate WER
stors

Port to use for a corporate WER
store

Mame to use for a corporate WER
stora

Lse Windows Integrated
Authentication for corporate WER
stors

Lse S5L for corpomata WER store

List of applications that require the
user o choose bateeen Dabug
and Continue

W hether the archive is enalxled
W hether WER & disalsled

Cretarminas whether reports are to
2 queued

Crisables or enalsles the WER LI

Prevents add itional crash data from
=i sent

List of applications excludad from
W ER

W hether reports should be sent o
the user queue

Path at which to store the dump
filas

Maxirnum number of dump files in
the path

Type of dump to generate cduring
acrash

Meaning

Far custom dumps, specifieas
custom options

Enables or disahles loaging

Faximum size of the archiva (in
filas)

Maximum size of the queaue

Ciays betwaen requests to have the
user check for solutions

Walueas
1 for paramaters, 2 for all data

1 fosr any data, 2 for parametars
only, 3 for param eters and safe
data, 4 for all data.

1 to enable owerrida

Same as DefaultCorsant
String containing the path
Port rumber

String containing the name

1 to enable bauilt-in
authantication

1to enable S5L
String containing the application

list
1 ta disable archive

1 to dizsabla WER
1 to disable queue

1 to dizsable LI
1 not b send

String containing the application
list
1 to send repoarts 1o the queue

String containing the path
Count

0 for a customn dump, 1 fora
minidump, 2 for a full durmp

Valuss

‘aluas definad in MINIDUMEP.
TYPE (s2e Chapter 13 for mare
infosrmation)

1 to disable kagaing

alue betwaan 1-5000

Value betweean 1-500
MNumber of days

Note The values listed under LocalDumps can also be configured per application by adding
the application name in the subkey path between LocalDumps and the relevant value. However,
they cannot be configured per user; they exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for communicating with crashed
processes. This mechanism has been extended to function as well over the standard exception port
mechanism that has always been present in the Windows exception dispatching design. As a result,

122

all Windows processes now have an error port that is actually an ALPC port object registered by
the WER service. The kernel, which is first notified of an exception, will use this port to send a
message to the WER service, which will then analyze the crashing process. This means that even
in severe cases of thread state damage, WER will still be able to receive notifications and launch
WerFault.exe to display a user interface instead of having to do this work within the crashing
thread itself. Additionally, WER will be able to generate a crash dump for the process, and a
message will be written to the Event Log. This solves all the problems of silent process death:
users are notified, debugging can occur, and service administrators can see the crash event. The

next experiment will demonstrate this improved behavior.
EXPERIMENT: Silent Process exception Termination

One typical crash that the error reporting mechanism prior to Windows Vista could not
handle was stack trashing. This means that the stack of the crashed thread was damaged, perhaps
even deallocated, so that even calling a new function (which puts the return address as well as
arguments on the stack) would generate another, subsequent crash, prompting the kernel to
terminate the process. You can see this behavior on a system running Windows Vista or later by
temporarily turning off the WER service and then enabling it again. Follow these steps:

1. Open the Services.msc Microsoft Management Console (MMC) snap-in.

2. Double-click on Windows Error Reporting, and then click the Stop button under the
Service status label.

3. Launch the Stacktrash.exe application (downloadable from the book home page on
Sysinternals).

4. Click the Trash Stack button. You should see the process disappear without a trace.

5. Now click the Start button in the Windows Error Reporting service configuration dialog
box again, and then launch Stacktrash.exe one more time. You should see the WER dialog box
displayed along with a pop-up balloon near the system tray notifying you that the application

encountered an error.

3.1.3 System Service Dispatching

As Figure 3-1 illustrated, the kernel’s trap handlers dispatch interrupts, exceptions, and
system service calls. In the preceding sections, you’ve seen how interrupt and exception handling
work; in this section, you’ll learn about system services. A system service dispatch is triggered as
a result of executing an instruction assigned to system service dispatching. The instruction that
Windows uses for system service dispatching depends on the processor on which it’s executing.

32-Bit System Service Dispatching

On x86 processors prior to the Pentium II, Windows uses the int 0x2e instruction (46
decimal), which results in a trap. Windows fills in entry 46 in the IDT to point to the system
service dispatcher. (Refer to Table 3-1.) The trap causes the executing thread to transition into
kernel mode and enter the system service dispatcher. A numeric argument passed in the EAX

123

processor register indicates the system service number being requested. The EDX register points
to the list of parameters the caller passes to the system service. To return to user mode, the system
service dispatcher uses the iretd (interrupt return instruction).

On x86 Pentium II processors and higher, Windows uses the special sysenter instruction,
which Intel defined specifically for fast system service dispatches. To support the instruction,
Windows stores at boot time the address of the kernel’s system service dispatcher routine in a
machine specific register (MSR) associated with the instruction. The execution of the instruction
causes the change to kernel mode and execution of the system service dispatcher. The system
service number is passed in the EAX processor register and the EDX register points to the list of
caller arguments. To return to user mode, the system service dispatcher usually executes the
sysexit instruction. (In some cases, like when the single-step flag is enabled on the processor, the
system service dispatcher uses the iretd instead because stepping over a sysexit instruction with
the kernel debugger would result in an undefined system state leading to a crash.)

Note Because certain older applications may have been hardcoded to use the int 0x2e
instruction to manually perform a system call (an unsupported operation), Windows keeps this
mechanism usable even on systems that support the sysenter instruction by still having the handler
registered.

EXPERIMENT: Locating the System Service Dispatcher

As mentioned, system calls occur through an interrupt, which means that the handler needs to
be registered in the IDT or through a special sysenter instruction that uses an MSR to store the
handler address at boot time. Here’s how you can locate the appropriate routine for either method:

1. To see the handler for the interrupt 2E version of the system call dispatcher, type !idt 2e in
the kernel debugger:

1. Ikd> lidt 2e
2. Dumping IDT:
3. 2e: 8208c8ee nt!KiSystemService
2. To see the handler for the sysenter version, use the rdmsr debugger command to read from
the MSR register 0x176, which stores the handler:
1. Ikd> rdmsr 176
2. msr[176] = 00000000~ 8208c9c0
3. 1kd> In 00000000 8208c9c0
4. (8208c9c0) nt!KiFastCallEntry
3. You can disassemble the KiSystemService routine with the u command. You’ll eventually
notice the following instructions:
1. nt!IKiSystemService+0x7b:
2. 8208c969 897d04 mov dword ptr [ebp+4],edi
3. 8208c96c fb sti
4. 8208c96d e€9dd000000 jmp nt!KiFastCallEntry+0x8f (8208ca4f)
Because the actual system call dispatching operations are common regardless of the mechanism
used to reach the handler, the older interrupt-based handler simply calls into the middle of the

124

newer sysenter-based handler to perform the same generic tasks. The only parts of the handlers
that are different are related to the generation of the trap frame and the setup of certain registers.

On K6 and higher 32-bit AMD processors, Windows uses the special syscall instruction,
which functions similarly to the x86 sysenter instruction, with Windows configuring a
syscallassociated processor register with the address of the kernel’s system service dispatcher. The
system call number is passed in the EAX register, and the stack stores the caller arguments. After
completing the dispatch, the kernel executes the sysret instruction. At boot time, Windows detects
the type of processor on which it’s executing and sets up the appropriate system call code to use
by storing a pointer to the correct code in the SharedUserData structure. The system service code
for NtReadFile in user mode looks like this:

1. 0:000> u NtReadFile

2. ntdll!ZwReadFile:

3. 77020074 b802010000 mov eax,102h

4. 77020079 ba0003fe7f mov edx,offset SharedUserData!SystemCallStub
(7Ffe0300)

5. 7702007e ff12 call dword ptr [edx]

6. 77020080 c22400 ret 24h

7. 77020083 90 nop

The system service number is 0x102 (258 in decimal) and the call instruction executes the system

service dispatch code set up by the kernel, whose pointer is at address 0x7ffe0300. (This

corresponds to the SystemCallStub member of the KUSER SHARED DATA structure, which

starts at 0x7FFE0000.) Because the following output was taken from an Intel Core 2 Duo, it

contains a pointer to sysenter:

0:000> dd SharedUserData!SystemCallStub 1 1

7ffe0300 77020130

0:000> u 77020f30

ntdl1!KiFastSystemCall:

7702030 8bd4 mov edx,esp

7702032 0f34 sysenter

D g b~ W N

64-Bit System Service Dispatching

On the x64 architecture, Windows uses the syscall instruction, which functions like the AMD
K6’s syscall instruction, for system service dispatching, passing the system call number in the
EAX register, the first four parameters in registers, and any parameters beyond those four on the
stack:

ntdll!NtReadFile:

00000000~ 77F9fc60 4c8bdl mov ri10,rcx
00000000~ 77F¥9fc63 b810200000 mov eax,0x102
00000000~ 77F¥9fc68 005 syscall

00000000~ 77f9fcba c3 ret

A W N P

On the [1A64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The
first eight system call arguments are passed in registers, and the rest are passed on the stack.

125

Kernel-Mode System Service Dispatching

As Figure 3-12 illustrates, the kernel uses the system call number to locate the system service
information in the system service dispatch table. This table is similar to the interrupt dispatch table
described earlier in the chapter except that each entry contains a pointer to a system service rather
than to an interrupt handling routine.

Note System service numbers can change between service packs—Microsoft occasionally adds or
removes system services, and the system service numbers are generated automatically as part of a

kernel compile.

User mode
Kernel mode
System ‘
service call System service
dispatch table
System 0
: service 1
dispatener \‘ 2 e———— System service 2
3
n

FIGURE 3-12 System service exceptions

The system service dispatcher, KiSystemService, copies the caller’s arguments from the
thread’s user-mode stack to its kernel-mode stack (so that the user can’t change the arguments as
the kernel is accessing them), and then executes the system service. If the arguments passed to a
system service point to buffers in user space, these buffers must be probed for accessibility before
kernel-mode code can copy data to or from them. This probing is performed only if the previous
mode of the thread is set to user mode. The previous mode is a value (kernel or user) that the
kernel saves in the thread whenever it executes a trap handler and identifies the privilege level of
the incoming exception, trap, or system call. As an optimization, if a system call comes from a
driver or the kernel itself, the probing and capturing of parameters is skipped, and all parameters
are assumed to be pointing to valid kernelmode buffers (also, access to kernel-mode data is
allowed). Because kernel-mode code can also make system calls, let’s look at the way these are
done. Because the code for each system call is in kernel mode, and the caller is already in kernel
mode, you can see that there shouldn’t be a need for an interrupt or sysenter operation: the CPU is
already at the right privilege level, and drivers, as well as the kernel, should only be able to
directly call the function required. In the executive’s case, this is actually what happens: the kernel
has access to all its own routines and can simply call them just like standard routines. Externally,
however, drivers can only access these system calls if they have been exported just like other
standard kernel-mode APIs. In fact, quite a few of the system callsare exported. Drivers, however,

126

are not supposed to access system calls this way. Instead, drivers must use the Zw versions of
these call—that is, instead of NtCreateFile, they must use ZwCreateFile. These Zw versions must
also be manually exported by the kernel, and only a handful are, but they are fully documented
and supported. The Zw versions are officially available only for drivers because of the previous
mode concept discussed earlier. Because this value is only updated each time the kernel builds a
trap frame, its value won’t actually change across a simple API call-—no trap frame is being
generated. By calling a function such as NtCreateFile directly, the kernel preserves the previous
mode value that indicates that it is user-mode, detects that the address passed is a kernel-mode
address, and fails the call, correctly asserting that user-mode applications should not pass
kernelmode pointers. However, this is not actually what happens, so how can the kernel be aware
of the correct previous mode? The answer lies in the Zw calls. These exported APIs are not
actually simple aliases or wrappers around the Nt versions. Instead, they are “trampolines” to the
appropriate Nt system call, which use the same system call dispatching mechanism. Instead of
generating an interrupt or a sysenter, which would be slow and/or unsupported, they build a fake
interrupt stack (the stack that the CPU would generate after an interrupt) and call the
KiSystemService routine directly, essentially emulating the CPU interrupt. The handler will
execute the same operations as if this call came from user mode, except it will detect the actual
privilege level this call came from and set the previous mode to kernel. Now NtCreateEvent sees
that the call came from the kernel and does not fail anymore. Here’s what the kernel-mode

trampolines look like:

Ikd> u nt!ZwReadFile

nt!ZwReadFile:

8207118 b802010000 mov eax,102h

8207f11d 8d542404 lea edx,[esp+4]

8207f121 9c pushfd

8207F122 6a08 push 8

8207F124 e8c5d70000 call nt!KiSystemService (8208c8ee)
8207F129 c22400 ret 24h

0o N O a b~ W N P

As you’ll see in Chapter 5, each thread has a pointer to its system service table (on 32-bit and
[A64 versions of Windows only; otherwise, the table address is hard-coded). Windows has two
built-in system service tables, and third-party drivers cannot extend the tables to add their own
service calls. The system service dispatcher determines which table contains the requested service
by interpreting a 2-bit field in the 32-bit system service number as a table index. The low 12 bits
of the system service number serve as the index into the table specified by the table index. The

fields are shown in Figure 3-13.

127

Table Index

I
Index into table System service number
31 13 11 0
0 0
Native API Native AP
1 1
Unused Win32k.sys API
KeServiceDescriptorTable KeServiceDescriptorTableShadow

FIGURE 3-13 System service number to system service translation
64-Bit System Service Dispatching

On the x64 architecture, Windows uses the syscall instruction, which functions like the AMD
K6’s syscall instruction, for system service dispatching, passing the system call number in the
EAX register, the first four parameters in registers, and any parameters beyond those four on the
stack:

ntdll!NtReadFile:

00000000~ 77F¥9fc60 4c8bdl mov ril0,rcx

. 00000000~ 77F9fc63 b810200000 mov eax,0x102
. 00000000~ 77F9fc68 OFO5 syscall

00000000~ 77f9fcb6a c3 ret

A WDNP

On the [A64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The
first eight system call arguments are passed in registers, and the rest are passed on the stack.

Kernel-Mode System Service Dispatching

As Figure 3-12 illustrates, the kernel uses the system call number to locate the system service
information in the system service dispatch table. This table is similar to the interrupt dispatch table
described earlier in the chapter except that each entry contains a pointer to a system service rather
than to an interrupt handling routine.

Note System service numbers can change between service packs—Microsoft occasionally
adds or removes system services, and the system service numbers are generated automatically as

part of a kernel compile.

128

User mode

Kernel mode
System ‘

service call System service

dispatch table
System 0
2 service 1

dletad \ 2 o——1— System service 2

3
n

FIGURE 3-12 System service exceptions

The system service dispatcher, KiSystemService, copies the caller’s arguments from the
thread’s user-mode stack to its kernel-mode stack (so that the user can’t change the arguments as
the kernel is accessing them), and then executes the system service. If the arguments passed to a
system service point to buffers in user space, these buffers must be probed for accessibility before
kernel-mode code can copy data to or from them. This probing is performed only if the previous
mode of the thread is set to user mode. The previous mode is a value (kernel or user) that the
kernel saves in the thread whenever it executes a trap handler and identifies the privilege level of
the incoming exception, trap, or system call. As an optimization, if a system call comes from a
driver or the kernel itself, the probing and capturing of parameters is skipped, and all parameters
are assumed to be pointing to valid kernelmode buffers (also, access to kernel-mode data is
allowed).

Because kernel-mode code can also make system calls, let’s look at the way these are done.
Because the code for each system call is in kernel mode, and the caller is already in kernel mode,
you can see that there shouldn’t be a need for an interrupt or sysenter operation: the CPU is
already at the right privilege level, and drivers, as well as the kernel, should only be able to
directly call the function required. In the executive’s case, this is actually what happens: the kernel
has access to all its own routines and can simply call them just like standard routines. Externally,
however, drivers can only access these system calls if they have been exported just like other
standard kernel-mode APIs. In fact, quite a few of the system callsare exported. Drivers, however,
are not supposed to access system calls this way. Instead, drivers must use the Zw versions of
these call—that is, instead of NtCreateFile, they must use ZwCreateFile. These Zw versions must
also be manually exported by the kernel, and only a handful are, but they are fully documented
and supported.

The Zw versions are officially available only for drivers because of the previous mode
concept discussed earlier. Because this value is only updated each time the kernel builds a trap

129

frame, its value won’t actually change across a simple API call—no trap frame is being generated.
By calling a function such as NtCreateFile directly, the kernel preserves the previous mode value
that indicates that it is user-mode, detects that the address passed is a kernel-mode address, and
fails the call, correctly asserting that user-mode applications should not pass kernelmode pointers.
However, this is not actually what happens, so how can the kernel be aware of the correct previous
mode? The answer lies in the Zw calls.

These exported APIs are not actually simple aliases or wrappers around the Nt versions.
Instead, they are “trampolines” to the appropriate Nt system call, which use the same system call
dispatching mechanism. Instead of generating an interrupt or a sysenter, which would be slow
and/or unsupported, they build a fake interrupt stack (the stack that the CPU would generate after
an interrupt) and call the KiSystemService routine directly, essentially emulating the CPU
interrupt. The handler will execute the same operations as if this call came from user mode, except
it will detect the actual privilege level this call came from and set the previous mode to kernel.
Now NtCreateEvent sees that the call came from the kernel and does not fail anymore. Here’s
what the kernel-mode trampolines look like:

Ikd> u nt!zZwReadFile

nt!ZwReadFile:

8207118 b802010000 mov eax,102h

8207f11d 8d542404 lea edx,[esp+4]

8207121 9c pushfd

8207f122 6a08 push 8

8207124 e8c5d70000 call nt!KiSystemService (8208c8ee)
8207F129 c22400 ret 24h

0w N o o b~ W N PR

As you’ll see in Chapter 5, each thread has a pointer to its system service table (on 32-bit and
[1A64 versions of Windows only; otherwise, the table address is hard-coded). Windows has two
built-in system service tables, and third-party drivers cannot extend the tables to add their own
service calls. The system service dispatcher determines which table contains the requested service
by interpreting a 2-bit field in the 32-bit system service number as a table index. The low 12 bits
of the system service number serve as the index into the table specified by the table index. The

fields are shown in Figure 3-13.

130

Table Index
|

Index into table System service number

31 13 11 0
0 0
Native API Native AP
1 1
Unused Win32k.sys API
KeServiceDescriptorTable KeServiceDescriptorTableShadow

FIGURE 3-13 System service number to system service translation
Service Descriptor Tables

A primary default array table, KeServiceDescriptorTable, defines the core executive system
services implemented in Ntosrknl.exe. The other table array, KeServiceDescriptorTableShadow,
includes the Windows USER and GDI services implemented in the kernel-mode part of the
Windows subsystem, Win32k.sys. The first time a Windows thread calls a Windows USER or
GDI service, the address of the thread’s system service table is changed to point to a table that
includes the Windows USER and GDI services. The KeAddSystemServiceTable function allows
Win32k.sys to add a system service table.

The system service dispatch instructions for Windows executive services exist in the system
library Ntdll.dll. Subsystem DLLs call functions in Ntdll to implement their documented functions.
The exception is Windows USER and GDI functions, in which the system service dispatch
instructions are implemented directly in User32.dll and Gdi32.dll—there is no Ntdll.dll involved.
These two cases are shown in Figure 3-14.

As shown in Figure 3-14, the Windows WriteFile function in Kernel32.dll calls the
NtWriteFile function in Ntdll.dll, which in turn executes the appropriate instruction to cause a
system service trap, passing the system service number representing NtWriteFile. The system
service dispatcher (function KiSystemService in Ntoskrnl.exe) then calls the real NtWriteFile to
process the I/0O request. For Windows USER and GDI functions, the system service dispatch calls
functions in the loadable kernel-mode part of the Windows subsystem, Win32k.sys.

131

Windows USER and

Windows kernel APIs GDI APIs
Windows E i Call USER or
application ElbvkEEre. | Application | &p servicef..)
WiriteFile in| Call NeWriteFie | Windows-
Kermel32.dll] Return to caller | specific
MNtWriteFile in SYSEMTER Uszed by all Gdiz2.dl SYSEMTER Windows-
Nrdlldll| Return to caller |subsystems — or User32.dil | Return to caller | specific
I | User mode
Kernel mode

Software interrupt Software interrupt

KiSystemService | Call NtWritefile KiSystemService in Ca”r:ﬂ't?r?:m
in Mtoskrnl.exe | Dismiss interrupt Mtoskrnl.exe

MtWriteFile in
Mtoskrnl.exe

l

Do the operation
Return to caller

Service entry point
in Win32k.sys

Disrniss interrupt

l

Do the operation
Return to caller

FIGURE 3-14 System service dispatching

EXPERIMENT: Mapping System Call Numbers to Functions

You can duplicate the same lookup performed by the kernel when dealing with a system call
ID to figure out which function is responsible for handling it.

1. The KeServiceDescriptorTable and KeServiceDescriptorTableShadow tables both point to
the same array of pointers for kernel system calls, called KiServiceTable. You can use the kernel
debugger command dds to dump the data along with symbolic information. The debugger will
attempt to match each pointer with a symbol. Here’s a partial output:

Ikd> dds KiServiceTable

820807d0 821be2e5 nt!INtAcceptConnectPort

820807d4 820659a6 nt!NtAccessCheck

820807d8 8224a953 nt!NtAccessCheckAndAuditAlarm

820807dc 820659dd nt!INtAccessCheckByType

820807e0 8224a992 nt!INtAccessCheckByTypeAndAuditAlarm

820807e4 82065a18 nt!INtAccessCheckByTypeResultList

820807e8 8224a9db nt!INtAccessCheckByTypeResultListAndAuditAlarm
820807ec 8224aa24 ntINtAccessCheckByTypeResultListAndAuditAlarmByHandle
10. 820807Ff0 822892af ntINtAddAtom

© 0 N o 0o b~ WN P

132

2. Instead of dumping the entire table, you can also look up a specific number. Because each
system call number is an index into the table, and because each element is 4 bytes, you can use the
following calculation: Handler = KiServiceTable + Number * 4. Let’s use the number 0x102,
obtained during our description of the NtReadFile stub code in Ntdll.dlL

1. Ikd> In poi(KiServiceTable + 102 * 4)
2. (82193023) nt!NtReadFile

3. Because drivers, including kernel-mode rootkits, are able to patch this table on 32-bit
versions of Windows, which is something the operating system does not support, you can use dds
to dump the entire table and look for any values outside the range of valid kernel addresses (dds
will also make this clear by not being able to look up a symbol for the function). Sixty-four bit
Windows organizes the system call table differently and uses relative pointers (an offset) to
system calls instead of the absolute addresses used by 32-bit Windows. Because code on 64-bit
Windows is guaranteed to be aligned on a 16-byte boundary, only the top 28 bits are used to
describe the offset, since the bottom 4 bits are always 0. Windows takes advantage of this fact by
using the bottom 4 bits to pack information on the number of arguments that each system call
takes (based on the data stored in KiArgumentTable). The base of the pointer is the
KiServiceTable itself, so you’ll have to dump the data in its raw format with the dd command.

Here’s an example of output from a 64-bit system:

1. lkd> dd KiServiceTable
2. FFFFF800°0105efc0 003021e0 0021efcO FFfc7b80 00202755

Each offset can be mapped to each function with the In command, by stripping off the bottom
4 bits (used as described above) and adding the remaining value to the base of KiServiceTable
itself, as shown here:

1. Ikd> In KiServiceTable+(003021e0 & -16)
2. (FFFFF800°013611a0) nt!NtMapUserPhysicalPagesScatter

EXPERIMENT: Viewing System Service Activity

You can monitor system service activity by watching the System Calls/Sec performance
counter in the System object. Run the Reliability and Performance Monitor, and in chart view,
click the Add button to add a counter to the chart. Select the System object, select the System
Calls/Sec counter, and then click the Add button to add the counter to the chart.

2. Instead of dumping the entire table, you can also look up a specific number. Because each
system call number is an index into the table, and because each element is 4 bytes, you can use the
following calculation: Handler = KiServiceTable + Number * 4. Let’s use the number 0x102,
obtained during our description of the NtReadFile stub code in Ntdll.dlL

1. Ikd> In poi(KiServiceTable + 102 * 4)
2. (82193023) nt!NtReadFile

3. Because drivers, including kernel-mode rootkits, are able to patch this table on 32-bit
versions of Windows, which is something the operating system does not support, you can use dds
to dump the entire table and look for any values outside the range of valid kernel addresses (dds
will also make this clear by not being able to look up a symbol for the function). Sixty-four bit

133

Windows organizes the system call table differently and uses relative pointers (an offset) to
system calls instead of the absolute addresses used by 32-bit Windows. Because code on 64-bit
Windows is guaranteed to be aligned on a 16-byte boundary, only the top 28 bits are used to
describe the offset, since the bottom 4 bits are always 0. Windows takes advantage of this fact by
using the bottom 4 bits to pack information on the number of arguments that each system call
takes (based on the data stored in KiArgumentTable). The base of the pointer is the
KiServiceTable itself, so you’ll have to dump the data in its raw format with the dd command.
Here’s an example of output from a 64-bit system:

1. lkd> dd KiServiceTable
2. FFFFFS800°0105efcO0 003021e0 0021efcO FFfc7b80 00202755

Each offset can be mapped to each function with the In command, by stripping off the bottom
4 bits (used as described above) and adding the remaining value to the base of KiServiceTable
itself, as shown here:

1. Ikd> In KiServiceTable+(003021e0 & -16)
2. (FFFFF800°013611a0) nt!NtMapUserPhysicalPagesScatter

EXPERIMENT: Viewing System Service Activity
You can monitor system service activity by watching the System Calls/Sec performance counter
in the System object. Run the Reliability and Performance Monitor, and in chart view, click the
Add button to add a counter to the chart. Select the System object, select the System Calls/Sec
counter, and then click the Add button to add the counter to the chart.

3.2 Object Manager

As mentioned in Chapter 2, Windows implements an object model to provide consistent and
secure access to the various internal services implemented in the executive. This section describes
the Windows object manager, the executive component responsible for creating, deleting,
protecting, and tracking objects. The object manager centralizes resource control operations that
otherwise would be scattered throughout the operating system. It was designed to meet the goals
listed on the next page.

EXPERIMENT: exploring the Object Manager

Throughout this section, you’ll find experiments that show you how to peer into the object
manager database. These experiments use the following tools, which you should become familiar

with if you aren’t already:

m WinObj (available from Sysinternals) displays the internal object manager’s namespace
and information about objects (such as the reference count, the number of open handles, security
descriptors, and so forth).

m Process Explorer and Handle from Sysinternals (introduced in Chapter 1) display the open
handles for a process.

134

m The Openfiles /query command displays the open file handles for a process, but it requires
a global flag to be set in order to operate.

m The kernel debugger 'handle command displays the open handles for a process.

WinObj from Sysinternals provides a way to traverse the namespace that the object manager
maintains. (As we’ll explain later, not all objects have names.) Run WinObj and examine the

layout, shown next.

'@"Wln@bj - Bysirtermali waysinternalicom E"El@
File Wiew Help
a3
S8 8 Harne Type Symlink R
f 'j i hiame . L Archeme Diirectory
at '_J Eas? Mamiedbjects LJ BaseflarmnedObjects Dlirectory
L j g::::“ H Eall.hank guremr_.-
e AL ectory
j ::::d”h[' 1 DiesDevices TpmbalicLink 317
: (27 Ide 1] Dirrwer D:rtr.‘bm}-
{9 Driver L Filedystern Curectory
@ £ FileSystem I GLoReLT? Directary -
-3 GLOBALT? [KzrnelObjects Cirectory
1 Kernelhjacts 1 KnernDilla Diirectary
:_j ErownDils I3 mLS Directory
2 ML [DbjactTypes Directory
-8 OkjectTypes E nPC Coneral Drirectory
I RPEC Contral [Security Cirectory
0 Bacurity 1 Sessions Cirectory
] -:-J Zassians L-_I'l.l."lndnws Diirectary
I UMDFCommunicabonPaorts B T Device
& Windowis ﬂﬂ}rlfs Diewice
(I:'C:eriyﬁr.Evtrlt Ewvenk
&;Dfs HymbolicLink \Dewvice\DFsClient
DEPEDBE.Debug.Tr.. Ewvent
(I:'Efilmrfwnl: Evenk
(L ersSmblnitEuent Euwent
(O ErS SndnitEvers Event
(Dlanmanhwrﬁnm... Ewent
igh LsafythenticationP... ALPC Port
g LsaPerformance Tzchon -
i

As noted previously, the Windows Openfiles /query command requires that a Windows
global flag called maintain objects list be enabled. (See the “Windows Global Flags” section later
in this chapter for more details about global flags.) If you type Openfiles /Local, it will tell you
whether the flag is enabled. You can enable it with the Openfiles /Local ON command. In either
case, you must reboot the system for the setting to take effect. Neither Process Explorer nor
Handle from Sysinternals require object tracking to be turned on because they use a device driver

to obtain the information.
The object manager was designed to meet the following goals:
m Provide a common, uniform mechanism for using system resources

m Isolate object protection to one location in the operating system so that C2 security

compliance can be achieved

m Provide a mechanism to charge processes for their use of objects so that limits can be
placed on the usage of system resources

135

m Establish an object-naming scheme that can readily incorporate existing objects, such as
the devices, files, and directories of a file system, or other independent collections of objects

m Support the requirements of various operating system environments, such as the ability of a
process to inherit resources from a parent process (needed by Windows and POSIX) and the
ability to create case-sensitive file names (needed by POSIX)

m Establish uniform rules for object retention (that is, for keeping an object available until all
processes have finished using it)

m Provide the ability to isolate objects for a specific session to allow for both local and global

objects in the namespace

Internally, Windows has three kinds of objects: executive objects, kernel objects, and
GDI/User objects. Executive objects are objects implemented by various components of the
executive (such as the process manager, memory manager, I[/O subsystem, and so on). Kernel
objects are a more primitive set of objects implemented by the Windows kernel. These objects are
not visible to user-mode code but are created and used only within the executive. Kernel objects
provide fundamental capabilities, such as synchronization, on which executive objects are built.
Thus, many executive objects contain (encapsulate) one or more kernel objects, as shown in
Figure 3-15.

Name
Owned by the | HandleCount
object manager | ReferenceCount

Type
Swened 2y the Kernel object
kernel
Suned by Ehe Executive object
executive

FIGURE 3-15 Executive objects that contain kernel objects

Note: GDI/User objects, on the other hand, belong to the Windows subsystem (Win32k.sys)
and do not interact with the kernel. For this reason, they are outside the scope of this book, but you
can get more information on them from the Windows SDK, the MSDN Library, or from the book

136

Windows Graphics Programming: Win32 GDI and DirectDraw, by Feng Yuan (Prentice Hall,
2000).

Details about the structure of kernel objects and how they are used to implement
synchronization are given later in this chapter. In the remainder of this section, we’ll focus on how
the object manager works and on the structure of executive objects, handles, and handle tables.
Here we’ll just briefly describe how objects are involved in implementing Windows security
access checking; we’ll cover this topic thoroughly in Chapter 6.

3.2.1 Executive Objects

Each Windows environment subsystem projects to its applications a different image of the
operating system. The executive objects and object services are primitives that the environment
subsystems use to construct their own versions of objects and other resources.

Executive objects are typically created either by an environment subsystem on behalf of a
user application or by various components of the operating system as part of their normal
operation. For example, to create a file, a Windows application calls the Windows CreateFile
function, implemented in the Windows subsystem DLL Kernel32.dll. After some validation and
initialization, CreateFile in turn calls the native Windows service NtCreateFile to create an
executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or
smaller than the set the executive provides. The Windows subsystem uses executive objects to
export its own set of objects, many of which correspond directly to executive objects. For example,
the Windows mutexes and semaphores are directly based on executive objects (which are in turn
based on corresponding kernel objects). In addition, the Windows subsystem supplies named pipes
and mailslots, resources that are based on executive file objects. Some subsystems, such as POSIX,
don’t support objects as objects at all. The POSIX subsystem uses executive objects and services
as the basis for presenting POSIX-style processes, pipes, and other resources to its applications.

Table 3-5 lists the primary objects the executive provides and briefly describes what they
represent. You can find further details on executive objects in the chapters that describe the related
executive components (or in the case of executive objects directly exported to Windows, in the

Windows API reference documentation).

Note The executive implements a total of 37 object types. Many of these objects are for use
only by the executive component that defines them and are not directly accessible by Windows
APIs. Examples of these objects include Driver, Device, and EventPair.

TABLE 3-5 Executive Objects Exposed to the Windows API

Object Type Reprasents

Process The virtual address space and control infermation necessary for the
execution of @ set of thread objects.

Thread An executable entity within a process.

Jabk A collection of processes manageable as a single entity through the job.

Section A region of shared memory (known as a file mapping object in Windows).

Filz An instance of an opsnad file or an Y0 device.

137

Object Type
Toksn

Brent
Semaphare

Mutes
Timer

loCompletion

Key

Directory

TeWarkerFactory

T Rm {Resource
Manager), TrnTx
{Transaction), TmTm
(Transaction Managsr),

Represents

The security profile (security |0, user rights, and so on) of a process ara
thread.

An ocbject with a persistent state (signaled or not signaled) that can be
used for symchronzation or notification.

A counter that provides a resource gate by allowing some maximurm
number of threads to access the resources protectad by the semaphore.

A& synchronization mechanism used to senalize access toa resource.
A& mechanism to notify a thread when a fixed period of time elapsas.

A methed for threads to enqueus and dequeue notifications of the
completion of YO operaticns (known as an 'O completion port in the
Windows AP

A mechanism to refer to data in the registry. Although keys appear in

the chject manager namespace they are managed by the configuration
rmanager, in away similar to that in which file objects are managed by file
system drivers. Zero or more key values are associated with a key object;
key waluss contain data about the key,

Avwvirtual directory in the object managers namespace responsible for
containing cther objects or abject directones.

A collection of threads assigned to perform a specific set of tasks. The
kernel can manage the number of work items that will be performed on
the queue how many threads should be responsible for the work, and
dynamic creation and termination of worker threads, respecting certain
lirnits the caller can set. Windows Vista and later expose the worker
factory object through thread pools.

Ohbjects usad by the Kemel Transaction Manager (KETM) for vanous
fransachions andfor enfistments as part of a resowrce manager or
transaction manager. Objacts can be created through the new Create-
TramsactionManager, CreafeResowrceManager, CreafeTransaction, and

TrnEm (Enlistrnent) CregteEniistment & Pls.

WindowStation An cbject that contains a dipboard, a set of global atams, and a group of

Desktop objects.

Desktop An object contained within a window station. & desktop has a legical

display surface and contains windows, menus, and hooks.

Note As Windows NT was originally supposed to support the OS/2 operating system, the
mutex had to be compatible with the existing design of OS/2 mutual-exclusion objects, a design
that required that a thread be able to abandon the object, leaving it inaccessible. Because this
behavior was considered unusual for such an object, another kernel object—the mutant—was
created. Eventually, OS/2 support was dropped, and the object became used by the Windows 32
subsystem under the name mutex (but it is still called mutant internally).

3.2.2 Object Structure

As shown in Figure 3-16, each object has an object header and an object body. The object
manager controls the object headers, and the owning executive components control the object
bodies of the object types they create. Each object header also points to a special object, called the
type object, that contains information common to each instance of the object. Additionally, up to
four optional subheaders exist: the name information header, the quota information header, the

handle information header, and the creator information header.

138

Object name

Object directory

Security descriptor

Object name £
Object directory =
Object Security descriptor
header |Quotacharges

Open handle count
Open handles list —

W\

\

Quota charges

Open handles list +—— %

[\

Object type @
Reference count Type object
Object Type name
body | Object-specific data Pool type
Default quota charges
Access types

Generic access rights mapping
Synchronizable? (YN
Methods:

Open, close, delete,

[parse, security,

guery name

FIGURE 3-16 Structure of an object

Object Headers and Bodies

The object manager uses the data stored in an object’s header to manage objects without
regard to their type. Table 3-6 briefly describes the object header fields, and Table 3-7 describes
the fields found in the optional object subheaders.

139

TABLE 3-6 Object Header Fields

Field

Handle count

Pointer count

Security descriptor

Object type

Subheader offsats

Flags

Purpose

Maintains a count of the number of currently opened handles to the
abject.

Maintains a count of the number of references to the object (including one

reference for each handle). Kernel-mode components can reference an
object by pointer without using a handle.

Determines who can use the object and what they can do with it. Note that
unnamed objects by definition cannot have security.

Points to a type object that contains attributes common to objects of this
type.
Megative offsets to the optional subheader structures described in Table

3-7, except for the creator information subheader, which, if present, always
precedes the object header.

Characteristics and object attributes for the object. See Table 3-9 for a list
of all the object flags.

In addition to the object header, which contains information that applies to any kind of object,

the subheaders contain optional information regarding specific aspects of the object. Note that

these structures are located at a variable offset from the top of the object header, the value of

which is stored in the object header itself (except, as mentioned above, for creator information). If

any of these offsets is 0, the object manager assumes that no subheader is associated with that

offset. In the case of creator information, a value in the object header flags determines whether the

subheader is present. (See Table 3-9 for information about these flags.)

TABLE 3-7 Optional Object Subheaders

MName Purpose Location
Mame Contains the object name, responsible for making an Object header—
information object visible to other processes for sharing and a pointer NamelnfoOffset
to the object directory, which provides the hierarchical
structure in which the object names are stored
Quota Lists the resource charges levied against a process when it Object header—
information opens a handle to the object QuotalnfoOffset
Handle Contains a database of entries (or just asingle entry) fora Object header—
information process that has an open handle to the object (along with HandlelnfoOffset
a per-process handle count)
Creataor Links the object inte a list for all the objects of the same Object header—
information type, and records the process that created the object, size of creator
along with a back trace information structure

Note The quota information subheader might also contain a pointer to the exclusive process

that allows access to this object if the object was created with the exclusive object flag. Also, this

subheader does not necessarily contain information on quotas being levied against the process.

More information on exclusive objects follows later in the chapter.

140

Each of these subheaders is optional and is present only under certain conditions, either

during system boot up or at object creation time. Table 3-8 describes each of these conditions.

TABLE 3-8 Conditions Required for Presence of Object Subheaders

MName

Mame infoermation

Cluota information

Handle information

Creator information

Condition
The object must have been created with a name.

The object must have different memory usage values than the default values
configured during the creation of the object type (more on object types later),
or must have a security descriptor larger than 2 KB and not be the initial
system process, or must have been created with the excusive object flag. (See
Table 3-8 for object flags.)

The object type must have enabled the maintain handle count flag. File
ohjects, Window5tation objects, and Desktop objects have this flag set in their
object type structure.

The object type must have enabled the maintain type list flag. LPC port
ohjects and Driver ohjects (only if Driver Verifier is enabled) have this flag set.
However, enabling the maintain abject type list global flag (discussed earlier)
will enable this for all objects. Type ohjects also have the flag set, for a reason

we'll describe shortly.

Finally, a number of attributes and/or flags determine the behavior of the object during
creation time or during certain operations. These flags are received by the object manager
whenever any new object is being created, in a structure called the object attributes. This structure
defines the object name, the root object directory where it should be inserted, the security
descriptor for the object, and the object attribute flags. Table 3-9 lists the various flags that can be
associated with an object.

Note When an object is being created through an API in the Windows subsystem (such as
CreateEvent or CreateFile), the caller does not specify any object attributes—the subsystem DLL
will perform the work behind the scenes. For this reason, all named objects created through Win32
will go in the BaseNamedObjects directory because this is the root object directory that
Kernel32.dll specifies as part of the object attributes structure. More information on
BaseNamedObjects and how it relates to the per-session namespace will follow later in this

chapter.

141

TABLE 3.0 Object Flags

Attributes Flag

OB INHERIT

COBJ_PERMAMEMT

OBJ_BEXCLUSVE

OBJ_CASE_IMSENSITVE

QBJ_OPEMIF

OB CPEMLUME

OBJ_KERMEL_HAMDLE

OBJ)_FORCE_ACCESS CHECK

COBJ_KERMEL_EXCLUSVE

A

MR

Attributes Flag
A,

A

A

Header Flag

Saved in the handle table entry

OB_FLAG_PERMANENT_OBIECT

QB_FLAG_EXCLUSIVE_OBIECT

Stored in the handle table entry

Mat stored, used at run time

Mot stored, used at run time

OB_FLAG_KERMEL_DBIECT

Mot stored, used at run time

Stored in the object name
subheader as QueryReferences

OB_FLAG_CREATOR_INFO
OF FLAG_DEFAULT SECURITY_

QUOTA

Header Flag

OB_FLAG_ SINGLE HANDLE
EMTRY

OB_FLAG_MEW_OBRIECT

OB_FLAG_DEFER_DELETE

Purpose

Dretermines whether the handle
to the olyject will b= inherited by
child processes, and whethera
process can use DuplicateH anale
to maks a copy

Diefines abject retention behavior
related to reference counts,
described later

Specifies that the olyject can
only be used by the process that
created it

Specifies that leokups for this
chject in the namespace should
b= case insensitive. May be
wverndden by the case insensitive
flag in the object type

Specifies that a create operation
for this abject name should result
in an open, if the object exists,
instead of a failure

Specifies that the clyect manager
should apen a handle to the
symbolic link, not the target

Specifies that the handle to this
cbject should be a kernel handle
{maore an this later)

Specifies that even if the object is
b=ing openad from kernal mode,
full access checks should be
performed

Cisables any user-mods process
fram opening a handle to the
chject; used to protect the
SDevice/Physicaldemory section
ochject

Specifies that there is an objact
creator information subheader on
top of the object headar

Specifies that the ohject’s security
descriptor is using the default
2-KB quota

Purpose

Specifies that the handle
information sulxheader contains
only a single entry and not a
database

Specifies that the abject has been
created but not yet inserted into
the chject namespace yst

Specifies that the object is being

deleted through the deferred
defetion worker thread

In addition to an object header, each object has an object body whose format and contents are
unique to its object type; all objects of the same type share the same object body format. By
creating an object type and supplying services for it, an executive component can control the
manipulation of data in all object bodies of that type. Because the object header has a static and

142

well-known size, the object manager can easily look up the object header for an object simply by
subtracting the size of the header from the pointer of the object. As explained earlier, to access the
subheaders, the object manager subtracts yet another value from the pointer of the object header.

Because of the standardized object header and subheader structures, the object manager is
able to provide a small set of generic services that can operate on the attributes stored in any
object header and can be used on objects of any type (although some generic services don’t make
sense for certain objects). These generic services, some of which the Windows subsystem makes
available to Windows applications, are listed in Table 3-10.

Although these generic object services are supported for all object types, each object has its
own create, open, and query services. For example, the I/O system implements a create file service
for its file objects, and the process manager implements a create process service for its process

objects.

Although a single create object service could have been implemented, such a routine would
have been quite complicated, because the set of parameters required to initialize a file object, for
example, differs markedly from that required to initialize a process object. Also, the object
manager would have incurred additional processing overhead each time a thread called an object
service to determine the type of object the handle referred to and to call the appropriate version of

the service.

TABLE 3-10 Generic Object Services

Service Purpose

Close Closes a handle to an ohjsct

Duplicate Shares an object by duplicating a handle and giving it to ancther process
CQuery abyject Gats information about an olbyect’s standard attrbutes

service Purposa

Chusry security Gets an object’s secunty descnptor

Set secunty Changes the protection on an albject

Wait for a single object Synchronizes a thread's exsoution with one abject

Wait for multiple Synchronizes a thread's execution with multiple objects
abjects

Type Objects

Object headers contain data that is common to all objects but that can take on different values
for each instance of an object. For example, each object has a unique name and can have a unique
security descriptor. However, objects also contain some data that remains constant for all objects
of a particular type. For example, you can select from a set of access rights specific to a type of
object when you open a handle to objects of that type. The executive supplies terminate and
suspend access (among others) for thread objects and read, write, append, and delete access
(among others) for file objects. Another example of an objecttype-specific attribute is

synchronization, which is described shortly.

143

To conserve memory, the object manager stores these static, object-type-specific attributes
once when creating a new object type. It uses an object of its own, a type object, to record this
data. As Figure 3-17 illustrates, if the object-tracking debug flag (described in the “Windows
Global Flags” section later in this chapter) is set, a type object also links together all objects of the
same type (in this case the process type), allowing the object manager to find and enumerate them,
if necessary. This functionality takes advantage of the creator information subheader discussed

previously.

Process

object

o —

|- Process: |

Object 1
Process Process Process

™ object2 T | oObjecta T [Object4 7|

FIGURE 3-17 Process objects and the process type object

EXPERIMENT: Viewing Object Headers and Type Objects

You can see the list of type objects declared to the object manager with the WinObj tool from
Sysinternals. After running WinObj, open the \ObjectTypes directory, as shown here:

144

; ﬁ i D] - Sysinte mals: wonaysinte rals,com =l
Eile Uiew Help
3 iy
| & @ Marme Type SyrnLink :
|_j ArcMarme ik Do ce Type
oot Gont
w3 Device i.é[:ll'fvﬁl' L Tipe
3 Driver @Emﬂegusuau on Type
w23 FileSprterm '_ﬁi‘hmt Tiee
[GLOBAL?? @Ewenﬂﬂair Type
-0 KermelObjects i.éFile Tupe
(23 EnownDlls léFiItn:rCnmmuniu:ati... Type
3 ML i FilterC onnectionPart. Type
] 1k et Tope s Igh InCampl etioh Type ¥
{1 RPC Control bk ok Type
3 Security b Fey Type
I3 Sessions bk KeyedPuent Type
[UAD FCommunicabo nforts iﬂhﬂu‘taﬂt Type
B Windows bt Process Type
gt Profil Type E
ligh Za ction Type
ﬁ&mapham Tiepe
ﬁ&ninn Type
b 5 bolic Link Type
igh Thread Type
igh Tirner Tyepe -
WO bjectTypes

You can look at the process object type data structure in the kernel debugger by first
identifying a process object with the !process command:

1. Ikd> process 0 O

2. **** NT ACTIVE PROCESS DUMP ****

3. PROCESS 860flab0 Sessionld: none Cid: 0004 Peb: 00000000 ParentCid: 0000
4. DirBase: 00122000 ObjectTable: 83000118 HandleCount: 484.

5. Image: System

Then execute the !object command with the process object address as the argument:

1. 1kd> 'object 860flab0

2. Object: 860flab0 Type: (860fled0) Process
3. ObjectHeader: 860f1a98 (old version)

4. HandleCount: 4 PointerCount: 139

Notice that the object header starts 0x18 (24 decimal) bytes prior to the start of the object
body—the size of the object header itself. You can view the object header with this command:

1. I1kd> dt nt!_OBJECT_HEADER 860f1a98

2. +0x000 PointerCount : 139

3. +0x004 HandleCount : 4

4. +0x004 NextToFree : 0x00000004

5. +0x008 Type : 0x860fled0 _OBJECT_TYPE
6. +0x00c NamelnfoOffset : 0 "*

7. +0x00d HandlelnfoOffset : 0 **

145

8.
9.
10.
11.
12.
13.

+0x00e QuotalnfoOffset : 0 **

+0x00Ff Flags : 0x22 ="~

+0x010 ObjectCreatelnfo : 0x82109380 _OBJECT CREATE_INFORMATION
+0x010 QuotaBlockCharged : 0x82109380

+0x014 SecurityDescriptor : 0x83003482

+0x018 Body : _QUAD

Now look at the object type data structure by obtaining its address from the Type field of the

object header data structure:

10.
11.
12.
13.

Ikd> dt nt! OBJECT TYPE 0x860fled0

+0x000 Mutex : _ERESOURCE

+0x038 TypeList : _LIST_ENTRY [Ox860f1f08 - 0x860f1f08]
+0x040 Name : _UNICODE_STRING 'Process"
+0x048 DefaultObject : (null)

+0x04c Index : 6

+0x050 TotalNumberOfObjects : Ox4f

+0x054 TotalNumberOfHandles : 0x12d
+0x058 HighWaterNumberOfObjects : 0x52
+0x05c HighWaterNumberOfHandles : 0x141
+0x060 Typelnfo : OBJECT TYPE_INITIALIZER
+0x0ac Key : 0x636F7250

+0x0b0 ObjectLocks : [32] _EX PUSH_LOCK

The output shows that the object type structure includes the name of the object type, tracks

the total number of active objects of that type, and tracks the peak number of handles and objects

of that type. The Typelnfo field stores the pointer to the data structure that stores attributes

common to all objects of the object type as well as pointers to the object type’s methods:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

Ikd> dt nt!_OBJECT_TYPE_INITIALIZER 0x860f1ed0+60
+0x000 Length : Ox4c

+0x002 ObjectTypeFlags : Oxa "~

+0x002 Caselnsensitive : 0yO

+0x002 UnnamedObjectsOnly : 0Oyl

+0x002 UseDefaultObject : 0yO

+0x002 SecurityRequired : Oyl

+0x002 MaintainHandleCount : OyO

+0x002 MaintainTypeList : 0yO

+0x004 ObjectTypeCode : O

+0x008 InvalidAttributes : O

+0x00c GenericMapping : _GENERIC_MAPPING
+0x01c ValidAccessMask : OxX1Fffff

+0x020 PoolType : O (NonPagedPool)
+0x024 DefaultPagedPoolCharge : 0x1000
+0x028 DefaultNonPagedPoolCharge : 0x2a0

+0x02c DumpProcedure : (null)

146

18.
19.
20.
21.
22.
23.
24

+0x030
+0x034
+0x038
+0x03c
+0x040
+0x044
+0x048

OpenProcedure

CloseProcedure :

ParseProcedure

: 0x822137d3 long nt!PspProcessOpen+0
0x8221c3d4 void nt!PspProcessClose+0

DeleteProcedure : 0x8221cle2 void nt!PspProcessDelete+0

> (null)

SecurityProcedure : 0x822502bb long nt!SeDefaultObjectMethod+0
QueryNameProcedure : (null)

OkayToCloseProcedure : (null)

Type objects can’t be manipulated from user mode because the object manager supplies no

services for them. However, some of the attributes they define are visible through certain native

services and through Windows API routines. The information stored in the type initializers is

described in Table 3-11.

TABLE 3-11 Type Initializer Fields

Attribute
Type name
Pool type

Default quota charges

Valid access mask

Generic access rights

mapping

Flags

Invalid attributes

Default object

Methods

Purpose

L "o

The name for abjects of this type ("pracess,” "event,” “port,” and so on).

Indicates whether objects of this type should be allocated from paged or
nonpaged memory.

Default paged and nonpaged pool values to charge to process quotas.

The types of access a thread can request when opening a handle to an
object of this type (“read,” "write,” “terminate,” "suspend,” and so on).

A mapping between the four generic access rights (read, write, execute,
and all) to the type-specific access rights.

Indicate whether objects must never have names (such as process
objects), whether they require a security descriptor, and whether a handle
database (handle information subheader) andyor a type-list linkage
(creator information subheader) should be maintained. The use default
object flag also defines the behavior for the default object field below.

Specifies object attribute flags (shown earlier in Table 3-9) that are invalid
for this object type.

Specifies the internal object manager event that should be used during
waits for this object, if the object type creator requested one, Note that
for File objects, the object manager hardcodes the default object to an
internal member inside the FILE_OBJECT structure called Event.

One or more routines that the object manager calls automatically at
certain points in an object’s lifetime.

Synchronization, one of the attributes visible to Windows applications, refers to a thread’s

ability to synchronize its execution by waiting for an object to change from one state to another. A

thread can synchronize with executive job, process, thread, file, event, semaphore,mutex, and

147

timer objects. Other executive objects don’t support synchronization. An object’s ability to

support synchronization is based on three possibilities:

m The executive object contains an embedded dispatcher object, a kernel object that is
covered in the section “Low-IRQL Synchronization™ later in this chapter.

m The creator of the object type requested a default object, and the object manager provided

one.

m The object type is a file and the object manager manually hardcoded a value inside the
object body (described in Table 3-11).

Object Methods

The last attribute in Table 3-11, methods, comprises a set of internal routines that are similar
to C++ constructors and destructors—that is, routines that are automatically called when an object
is created or destroyed. The object manager extends this idea by calling an object method in other
situations as well, such as when someone opens or closes a handle to an object or when someone

attempts to change the protection on an object. Some object types
specify methods, whereas others don’t, depending on how the object type is to be used.

When an executive component creates a new object type, it can register one or more methods
with the object manager. Thereafter, the object manager calls the methods at well-defined points
in the lifetime of objects of that type, usually when an object is created, deleted, or modified in

some way. The methods that the object manager supports are listed in Table 3-12.

The reason for these object methods is to address the fact that, as we’ve seen, certain object
operations are generic (close, duplicate, security, and so on). Fully generalizing these generic
routines would have required the designers of the object manager to anticipate all object types.
However, the routines to create an object type are exported by the kernel, enabling third-party
components to create their own object types. Although this functionality is not documented for
driver developers, it is internally used by Win32k.sys to define WindowStation and Desktop
objects. Through object method extensibility, Win32k.sys defines its routines for handling

operations such as create and query.

One exception to this rule is the security routine, which does, unless otherwise instructed,
default to SeDefaultObjectMethod. This routine does not need to know the internal structure of the
object because it only deals with the security descriptor for the object, and we’ve seen that the
pointer to the security descriptor is stored in the generic object header, not inside the object body.
However, if an object does require its own additional security checks, it can define a custom
security routine. The other reason for having a generic security method is to avoid complexity,
because most objects rely on the security reference monitor to manage their security.

148

TABLE 3-12 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that exists in a

secondary object namespace

Parse When the object manager is searching for an object name that exists in a
secondary object namespace

Dump Not used
Okay to close When the object manager is instructed to close a handle

Security When a process reads or changes the protection of an object, such as a file, that
exists in a secondary object namespace

The object manager calls the open method whenever it creates a handle to an object, which it
does when an object is created or opened. The WindowStation and Desktop objects provide an
open method; for example, the WindowStation object type requires an open method so that
Win32k.sys can share a piece of memory with the process that serves as a desktoprelated memory
pool.

An example of the use of a close method occurs in the I/O system. The I/O manager registers
a close method for the file object type, and the object manager calls the close method each time it
closes a file object handle. This close method checks whether the process that is closing the file
handle owns any outstanding locks on the file and, if so, removes them. Checking for file locks
isn’t something the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it deletes a temporary
object from memory. The memory manager, for example, registers a delete method for the section
object type that frees the physical pages being used by the section. It also verifies that any internal
data structures the memory manager has allocated for a section are deleted before the section
object is deleted. Once again, the object manager can’t do this work because it knows nothing
about the internal workings of the memory manager. Delete methods for other types of objects

perform similar functions.

The parse method (and similarly, the query name method) allows the object manager to
relinquish control of finding an object to a secondary object manager if it finds an object that
exists outside the object manager namespace. When the object manager looks up an object name,
it suspends its search when it encounters an object in the path that has an associated parse method.
The object manager calls the parse method, passing to it the remainder of the object name it is
looking for. There are two namespaces in Windows in addition to the object manager’s: the

registry namespace, which the configuration manager implements, and the file system namespace,

149

which the I/O manager implements with the aid of file system drivers.(See Chapter 4 for more
information on the configuration manager and Chapter 7 for more about the I/O manager and file
system drivers.)

For example, when a process opens a handle to the object named \Device\FloppyO\docs
\resume.doc, the object manager traverses its name tree until it reaches the device object named
FloppyO. It sees that a parse method is associated with this object, and it calls the method, passing
to it the rest of the object name it was searching for—in this case, the string \docs\resume.doc. The
parse method for device objects is an I/O routine because the I/O manager defines the device
object type and registers a parse method for it. The /O manager’s parse routine takes the name
string and passes it to the appropriate file system, which finds the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse method. It is
called whenever a thread tries to query or change the security information protecting a file. This
information is different for files than for other objects because security information is stored in the
file itself rather than in memory. The I/O system, therefore, must be called to find the security
information and read or change it.

Finally, the okay-to-close method is used as an additional layer of protection around the
malicious—or incorrect—closing of handles being used for system purposes. For example, each
process has a handle to the Desktop object(s) on which its thread or threads have windows visible.
Under the standard security model, it would be possible for those threads to close their handles to

their desktops because the process has full control of its own objects.

In this scenario, the threads would end up without a desktop associated with them—a
violation of the windowing model. Win32k.sys registers an okay-to-close routine for the Desktop
and WindowStation objects to prevent this behavior.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives a handle that represents its
access to the object. Referring to an object by its handle is faster than using its name because the
object manager can skip the name lookup and find the object directly. Processes can also acquire
handles to objects by inheriting handles at process creation time (if the creator specifies the inherit
handle flag on the CreateProcess call and the handle was marked as inheritable, either at the time
it was created or afterward by using the Windows SetHandleInformation function) or by receiving
a duplicated handle from another process. (See the Windows DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads can use the
object. Using handles to manipulate system resources isn’t a new idea. C and Pascal (an older
programming language similar to Delphi) run-time libraries, for example, return handles to opened
files. Handles serve as indirect pointers to system resources; this indirection keeps application

programs from fiddling directly with system data structures.

Note Executive components and device drivers can access objects directly because they are
running in kernel mode and therefore have access to the object structures in system memory.
However, they must declare their usage of the object by incrementing the reference count so that
the object won’t be deallocated while it’s still being used. (See the section “Object Retention”

later in this chapter for more details.) To successfully make use of this object, however, device

150

drivers need to know the internal structure definition of the object, and this is not provided for
most objects. Instead, device drivers are encouraged to use the appropriate kernel APIs to modify
or read information from the object. For example, although device drivers can get a pointer to the
Process object (EPROCESS), the structure is opaque, and Ps* APIs must be used. For other
objects, the type itself is opaque (such as most executive objects that wrap a dispatcher
object—for example, events or mutexes). For these objects, drivers must use the same system calls
that user-mode applications end up calling (such as ZwCreateEvent) and use handles instead of
object pointers.

Object handles provide additional benefits. First, except for what they refer to, there is no
difference between a file handle, an event handle, and a process handle. This similarity provides a
consistent interface to reference objects, regardless of their type. Second, the object manager has
the exclusive right to create handles and to locate an object that a handle refers to. This means that
the object manager can scrutinize every user-mode action that affects an object to see whether the
security profile of the caller allows the operation requested on the object in question.

EXPERIMENT: Viewing Open Handles

Run Process Explorer, and make sure the lower pane is enabled and configured to show open
handles. (Click on View, Lower Pane View, and then Handles). Then open a command prompt
and view the handle table for the new Cmd.exe process. You should see an open file handle to the

current directory. For example, assuming the current directory is C:\, Process Explorer shows the

following:
o Process E.q:ulnrer- Ssirternaks: l.-mw.ﬁy-sintemaI.i.c-:um'[.ﬁ.I:EK-L.;’;PTdP’:Lﬁ.nmnlstmmr] =3 I_EI@
Eile Dpkion: Yiew Process Find Handle LUsers Help
Mg =0Es @« ad N S
Froecess > =] (n= 1] Cluwibch Dadfa D=sciiption Compsiy blane :.
o1 I8 W' moones: Commeand Frocesso ool Corporation
EGSISEME L141] Chenl Server Runlme Procsss Ml creeraft Corporshan
e e 16 E1 Chan! Server Runlime Process Plicaceoi® Coiporation bt
T = Iame Handie il i
Dirachory “noenDlk Oed Q0000003
Fils ChUpsrsvadmineiraor (5] D000 00020
Fi= Cvwrdosst S eslem3Zen-US omd s ma aC w0 20033
Fl= LM indmesh Sy elem 3 en LS eemel 12 dlmw (L=11] (001 20033
[2-1] HELH] 00RO
by HELMVEYST EMAC antalS etD0 3 apirelblls\Local= 2L DHO0020319
[2°1] HELL 5% 1] uO00F003
=1 HELKMUEYETE MW onnots 0034 Corinoh Ml \Locakai s bemate Soife O [IENrE e]
[4=T HELRVEYSTE MMConnioS et 3 Coetol bk Larouage Gioups [i3d [0S
=1 HELWVEYST E MMContiofs at0 3\ oo 5 e son Managa [t RO
=1 HE LMV OFT AR E S cioscitsindoss BT\ umertsesnn dmaga Fike Exacunon Options L5 [IELLETE]
Thread cmelewel 17400 1356] D& FFFFF
Un'indorSkaton womrmonsh 1 Windows wndos S et ore o kel 10 00RO
GPU Lsage: 1,52% Comrit Charge: 18785 | Processes: 30 Threads: 375 Handles: 9035

If you then change the current directory with the cd command, you will see in Process Explorer
that the handle to the previous current directory is closed and a new handle is opened to the new
current directory. The previous handle is highlighted briefly in red, and the new handle is
highlighted in green. The duration of the highlight can be adjusted by clicking Options and then
Difference Highlight Duration.

Process Explorer’s differences highlighting feature makes it easy to see changes in the handle
table. For example, if a process is leaking handles, viewing the handle table with Process Explorer

151

can quickly show what handle or handles are being opened but not closed. This information can
help the programmer find the handle leak.

You can also display the open handle table by using the command-line Handle tool from
Sysinternals. For example, note the following partial output of Handle examining the file object
handles located in the handle table for a Cmd.exe process before and after changing the directory.
By default, Handle will filter out nonfile handles unless the —a switch is used, which displays all
the handles in the process, similar to Process Explorer.

1. C:\>handle -p cmd.exe

2. Handle v3.3

3. Copyright (C) 1997-2007 Mark Russinovich
4. Sysinternals - www.sysinternals.com

6. cmd.exe pid: 5124 Alex-Laptop\Alex lonescu

7. 3C: File (R-D) C:\Windows\System32\en-US\cmd.exe.mui
8. 44: File (RW-) C:\

9. C:\>cd windows

10. C:\Windows>handle -p cmd.exe

11. Handle v3.3

12. Copyright (C) 1997-2007 Mark Russinovich

13. Sysinternals - www.sysinternals.com

15. cmd.exe pid: 5124 Alex-Laptop\Alex lonescu
16. 3C: File (R-D) C:\Windows\System32\en-US\cmd.exe.mui
17.40: File (RW-) C:\Windows

An object handle is an index into a process-specific handle table, pointed to by the executive
process (EPROCESS) block (described in Chapter 5). The first handle index is 4, the second 8,
and so on. A process’s handle table contains pointers to all the objects that the process has opened
a handle to. Handle tables are implemented as a three-level scheme, similar to the way that the x86
memory management unit implements virtual-to-physical address translation, giving a maximum
of more than 16,000,000 handles per process. (See Chapter 9 for details about memory

management in x86 systems.)

Only the lowest-level handle table is allocated on process creation—the other levels are
created as needed. The subhandle table consists of as many entries as will fit in a page minus one
entry that is used for handle auditing. For example, for x86 systems a page is 4096 bytes, divided
by the size of a handle table entry (8 bytes), which is 512, minus 1, which is a total of 511 entries
in the lowest-level handle table. The mid-level handle table contains a full page of pointers to
subhandle tables, so the number of subhandle tables depends on the size of the page and the size
of a pointer for the platform. Figure 3-18 describes the handle table layout on Windows.

152

Process

Handle
table

Subhandle
table

Middle-level
pointers

Top-level
pointers

FIGURE 3-18 Windows process handle table architecture

EXPERIMENT: Creating the Maximum Number of Handles

The test program Testlimit from Sysinternals has an option to open handles to an object until
it cannot open any more handles. You can use this to see how many handles can be created in a
single process on your system. Because handle tables are allocated from paged pool, you might
run out of paged pool before you hit the maximum number of handles that can be created in a

single process. To see how many handles you can create on your system, follow these steps:

1. Download the Testlimit .zip file from www.microsoft.com/technet/ sysinternals, and unzip

it into a directory.

2. Run Process Explorer, and then click View and then System Information. Notice the
current and maximum size of paged pool. (To display the maximum pool size values, Process
Explorer must be configured properly to access the symbols for the kernel image, Ntoskrnl.exe.)
Leave this system information display running so that you can see pool utilization when you run

the Testlimit program.
3. Open a command prompt.

4. Run the Testlimit program with the -h switch (do this by typing testlimit —h). When
Testlimit fails to open a new handle, it will display the total number of

handles it was able to create. If the number is less than approximately 16 million, you are

probably running out of paged pool before hitting the theoretical perprocess handle limit.

153

5. Close the Command Prompt window; doing this will kill the Testlimit process, thus
closing all the open handles.

As shown in Figure 3-19, on x86 systems, each handle entry consists of a structure with two
32-bit members: a pointer to the object (with flags), and the granted access mask. On 64-bit
systems, a handle table entry is 12 bytes long: a 64-bit pointer to the object header and a 32-bit
access mask. (Access masks are described in Chapter 6.)

Audit on close

Inheritable
‘ |— Lock

Pointer to object header All
|— Frotect from close
Access mask P
l I
|
32 bits

FIGURE 3-19 Structure of a handle table entry

The first flag is a lock bit, indicating whether the entry is currently in use. The second flag is
the inheritance designation—that is, it indicates whether processes created by this process will get
a copy of this handle in their handle tables. As already noted, handle inheritance can be specified
on handle creation or later with the SetHandleInformation function. (This flag can also be
specified with the Windows SetHandleInformation function.) The third flag indicates whether
closing the object should generate an audit message. (This flag isn’t exposed to Windows—the
object manager uses it internally.) Finally, the protect from close bit, stored in an unused portion
of the access mask, indicates whether the caller is allowed to close this handle. (This flag can be

set with the NtSetInformationObject system call.)

System components and device drivers often need to open handles to objects that usermode
applications shouldn’t have access to. This is done by creating handles in the kernel handle table
(referenced internally with the name ObpKernelHandleTable). The handles in this table are
accessible only from kernel mode and in any process context. This means that a kernel-mode
function can reference the handle in any process context with no performance impact. The object
manager recognizes references to handles from the kernel handle table when the high bit of the
handle is set—that is, when references to kernel-handle-table handles have values greater than
0x80000000. The kernel handle table also serves as the handle table for the System process.

EXPERIMENT: Viewing the Handle Table with the Kernel Debugger

The 'handle command in the kernel debugger takes three arguments:

1. Thandle < handle index> < flags> < processid>

154

The handle index identifies the handle entry in the handle table. (Zero means display all
handles.) The first handle is index 4, the second 8, and so on. For example, typing 'handle 4 will

show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means display only the information in
the handle entry, bit 1 means display free handles (not just used handles), and bit 2 means display
information about the object that the handle refers to. The following command displays full details
about the handle table for process ID 0x408:

Ikd> Thandle O 7 acc
processor number 0, process 00000acc
Searching for Process with Cid == acc
PROCESS 89elead8 Sessionld: 1 Cid: Oacc Peb: 7ffd3000 ParentCid: 0a28
DirBase: b25c8740 ObjectTable: fla76c78 HandleCount: 246.
Image: windbg.exe
Handle table at f0aaa000 with 246 Entries in use
0000: free handle, Entry address f0aaa000, Next Entry fffffffe
0004: Object: 95d02d70 GrantedAccess: 00000003 Entry: f0aaa008
. Object: 95d02d70 Type: (860f5d60) Directory
. ObjectHeader: 95d02d58 (old version)
- HandleCount: 74 PointerCount: 103
. Directory Object: 83007470 Name: KnownDlIs
. 0008: Object: 89elad468 GrantedAccess: 00100020 Entry: f0aaal0l0
.Object: 89ela468 Type: (8613F040) File
. ObjectHeader: 89ela450 (old version)
- HandleCount: 1 PointerCount: 1

© 0 N o 0o b~ W N PP

e e O =
© N o U h W N R O

. Directory Object: 00000000 Name: \Program Files\Debugging Tools for
Windows
19. {HarddiskVolume3}

EXPERIMENT: Searching for Open Files with the Kernel Debugger

Although you can use Process Explorer as well as the OpenFiles.exe utility to search for open
file handles, these tools are not available when looking at a crash dump or analyzing a system
remotely. You can instead use the !devhandles command to search for handles opened to files on a
specific volume. (See Chapter 7 for more information on devices, files, and volumes.)

1. First you need to pick the drive letter you are interested in and obtain the pointer to its

Device object. You can use the !object command as shown here:

Ikd> 'object \GLOBAL??\C:

Object: 8d274e68 Type: (84d10bc0) SymbolicLink
ObjectHeader: 8d274e50 (old version)
HandleCount: O PointerCount: 1

Directory Object: 8b6053b8 Name: C:

Target String is "\Device\HarddiskVolume3*
Drive Letter Index is 3 (C:)

N o g b~ WN R

155

2. Next use the !devobj command to get the Device object of the target volume name:

1. 1kd> !'devobj \Device\HarddiskVolume3
2. Device object (86623e10) is for:

3. Now you can use the pointer of the Device object with the !devhandles command. Each

object shown points to a file:

1. Ikd> !devhandles 86623e10

2. Checking handle table for process 0x84d0da90

3. Handle table at 890d6000 with 545 Entries in use

4. PROCESS 84d0da90 Sessionld: none Cid: 0004 Peb: 00000000 ParentCid: 0000
5. DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.

6. Image: System

7. 0084: Object: 8684c4b8 GrantedAccess: 0012019f

8. PROCESS 84d0da90 Sessionld: none Cid: 0004 Peb: 00000000 ParentCid: 0000
9. DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.

10. Image: System

11.0088: Object: 8684c348 GrantedAccess: 0012019f

12. PROCESS 84d0da90 Sessionld: none Cid: 0004 Peb: 00000000 ParentCid: 0000
13. DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.

14 . Image: System

4. Finally, you can repeat the !object command on these objects to figure out to which file

they refer:

1. Ikd> 'object 8684c4b8

2. Object: 8684c4b8 Type: (84d5a040) File

3. ObjectHeader: 8684c4a0 (old version)

4. HandleCount: 1 PointerCount: 2

5. Directory Object: 00000000 Name:

6. \$Extend\$RmMetadata\$TxFLog\$TxFLogContainer00000000000000000004
7. {HarddiskVolume3}

Because handle leaks can be dangerous to the system by leaking kernel pool memory and
eventually causing systemwide memory starvation—and can also break applications in subtle
ways—Windows includes a couple of debugging mechanisms that can be enabled to monitor,
analyze, and debug issues with handles. Additionally, the Debugging Tools for Windows come
with two extensions that tap into these mechanisms and provide easy graphical analysis.

Table 3-13 illustrates them:

156

TABLE 3-13 Debugging Mechanisms for Object Handles

Mechanism Enabled By Kernel Debugger Extension

Handle Tracing Kernel Stack Trace systemwide and/or 'htrace <handle value> <process ID>
Database per-process with the User Stack Trace
option checked with Gflags.exe.

Object Reference Per-process-name(s), or per-object- lobtrace <object pointer>
Tracing type-pool-tag(s), with Gflags.exe,
under Object Reference Tracing.

Enabling the handle tracing database is useful when attempting to understand the use of each
handle within an application or the system context. The !htrace debugger extension can display the
stack trace captured at the time a specified handle was opened. After you discover a handle leak,
the stack trace can pinpoint the code that is creating the handle, and it can be analyzed for a
missing call to a function such as CloseHandle.

The object reference tracing !obtrace extension monitors even more by showing the stack
trace for each new handle created as well as each time a handle is referenced by the kernel (and
also opened, duplicated, or inherited) and dereferenced. By analyzing these patterns, misuse of an
object at the system level can be more easily debugged. Additionally, these reference traces
provide a way to understand the behavior of the system when dealing with certain objects. Tracing
processes, for example, will display references from all the drivers on the system that have
registered callback notifications (such as Process Monitor) and helps detect rogue or buggy
third-party drivers that may be referencing handles in kernel mode but never dereferencing them.

Note When enabling object reference tracing for a specific object type, you can obtain the
name of its pool tag by looking at the key member of the OBJECT TYPE structure when using
the dt command. Each object type on the system has a global variable that references this
structure—for example, PsProcessType. Alternatively, you can use the !object command, which

displays the pointer to this structure.
Object Security

When you open a file, you must specify whether you intend to read or to write. If you try to
write to a file that is opened for read access, you get an error. Likewise, in the executive, when a
process creates an object or opens a handle to an existing object, the process must specify a set of
desired access rights—that is, what it wants to do with the object. It can request either a set of
standard access rights (such as read, write, and execute) that apply to all object types or specific
access rights that vary depending on the object type. For example, the process can request delete
access or append access to a file object. Similarly, it might require the ability to suspend or
terminate a thread object.

When a process opens a handle to an object, the object manager calls the security reference
monitor, the kernel-mode portion of the security system, sending it the process’s set of desired
access rights. The security reference monitor checks whether the object’s security descriptor

157

permits the type of access the process is requesting. If it does, the reference monitor returns a set
of granted access rights that the process is allowed, and the object manager stores them in the
object handle it creates. How the security system determines who gets access to which objects is

explored in Chapter 6.

Thereafter, whenever the process’s threads use the handle, the object manager can quickly
check whether the set of granted access rights stored in the handle corresponds to the usage
implied by the object service the threads have called. For example, if the caller asked for read

access to a section object but then calls a service to write to it, the service fails.
EXPERIMENT: Looking at Object Security

You can look at the various permissions on an object by using either Process Explorer,
WinObj, or AccessCheck, all tools from Sysinternals. Let’s look at different ways you can display
the access control list (ACL) for an object.

1. You can use WinObj to navigate to any object on the system, including object directories,
right-click on the object, and select Properties. For example, select the BaseNamedObjects
directory, select Properties, and click on the Security tab. You should see a dialog box similar to

the one shown next.

'.Eaftﬂurned:Dk—rject: Properties] [=3a)
Cetails
EI’DL:I:I ar user names:
82 Everpone
8% RESTRICTED
B2 SYSTEM
| Add [Hemove]
Permizzions for Evenone Algw Dzry
List ¥ B =
#dd Object & ‘E ‘
Add Subdrectony F L
Read = =
wiite [-
For special permizzion: o advanced stings, clck
Advanced, S
Leam sbout access conbol and peimizsors

[0F,] Cancel

By examining the settings in the dialog box, you can see that the Everyone group doesn’t
have delete access to the directory, for example, but the SYSTEM account does (because this is
where session 0 services with SYSTEM privileges will store their objects). Note that even though

158

Everyone has the Add Object permission, a special privilege is required to be able to insert objects

in this directory when running in another session.

2. Instead of using WinObj, you can view the handle table of a process using Process
Explorer, as shown in the experiment “Viewing Open Handles” earlier in the chapter. Look at the
handle table for the Explorer.exe process. You should notice a Directory object handle to the
\Sessions\n\BaseNamedObjects directory. (We’ll describe the per-session namespace shortly.)
You can double-click on the object handle and then click on the Security tab and see a similar
dialog box (with more users and rights granted). Unfortunately, Process Explorer cannot decode
the specific object directory access rights, so all you’ll see are generic rights.

3. Finally, you can use AccessCheck to query the security information of any object by using
the —o switch as shown in the following output. Note that using AccessCheck will also show you
the integrity level of the object. (See Chapter 6 for more information on integrity levels and the
security reference monitor.)

1. C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects

N

AccessChk v4.02 - Check access of files, keys, objects, processes or
services

Copyright (C) 2006-2007 Mark Russinovich

Sysinternals - www.sysinternals.com

\Sessions\1\BaseNamedObjects

3

4

5

6. Type: Directory
7. Low Mandatory Level [No-Write-Up]
8. RW NT AUTHORITY\SYSTEM

9. RW Alex-Laptop\Alex lonescu

10. RW BUILTIN\Administrators

11. R Everyone

12_ NT AUTHORITY\RESTRICTED

Windows also supports Ex (Extended) versions of the APIs—CreateEventEx, CreateMutex-
Ex, CreateSemaphoreEx—that add another argument for specifying the access mask. This makes
it possible for applications to properly use discretionary access control lists (DACLs) to secure
their objects without breaking their ability to use the create object APIs to open a handle to them.
You might be wondering why a client application would not simply use OpenEvent, which does
support a desired access argument. Using the open object APIs leads to an inherent race condition
when dealing with a failure in the open call—that is to say, when the client application has
attempted to open the event before it has been created. In most applications of this kind, the open
API would be followed by a create API in the failure case. Unfortunately, there is no guaranteed
way to make this create operation atomic—in other words, to only occur once. Indeed, it would be
possible for multiple threads and/or processes to have executed the create API concurrently and all
attempt to create the event at the same time. This race condition and the extra complexity required
to try and handle it makes using the open object APIs an inappropriate solution to the problem,
which is why the Ex APIs should be used instead.

159

Object Retention

There are two types of objects: temporary and permanent. Most objects are temporary—that
is, they remain while they are in use and are freed when they are no longer needed. Permanent
objects remain until they are explicitly freed. Because most objects are temporary, the rest of this
section describes how the object manager implements object retention—that is, retaining
temporary objects only as long as they are in use and then deleting them. Because all user-mode
processes that access an object must first open a handle to it, the object manager can easily track
how many of these processes, and even which ones, are using an object. Tracking these handles
represents one part in implementing retention. The object manager implements object retention in
two phases. The first phase is called name retention, and it is controlled by the number of open
handles to an object that exist. Every time a process opens a handle to an object, the object
manager increments the open handle counter in the object’s header. As processes finish using the
object and close their handles to it, the object manager decrements the open handle counter. When
the counter drops to 0, the object manager deletes the object’s name from its global namespace.

This deletion prevents new processes from opening a handle to the object.

The second phase of object retention is to stop retaining the objects themselves (that is, to
delete them) when they are no longer in use. Because operating system code usually accesses
objects by using pointers instead of handles, the object manager must also record how many object
pointers it has dispensed to operating system processes. It increments a reference count for an
object each time it gives out a pointer to the object; when kernel-mode components finish using
the pointer, they call the object manager to decrement the object’s reference count. The system
also increments the reference count when it increments the handle count, and likewise decrements
the reference count when the handle count decrements, because a handle is also a reference to the
object that must be tracked. (For further details on object retention, see the WDK documentation
on the functions ObReferenceObjectByPointer and ObDereferenceObject.)

Figure 3-20 illustrates two event objects that are in use. Process A has the first event open.
Process B has both events open. In addition, the first event is being referenced by some
kernel-mode structure; thus, the reference count is 3. So even if Processes A and B closed their
handles to the first event object, it would continue to exist because its reference count is 1.
However, when Process B closes its handle to the second event object, the object would be
deallocated.

So even after an object’s open handle counter reaches 0, the object’s reference count might
remain positive, indicating that the operating system is still using the object. Ultimately, when the
reference count drops to 0, the object manager deletes the object from memory. This deletion has
to respect certain rules and also requires cooperation from the caller in certain cases. For example,
because objects can be present both in paged or nonpaged pool memory (depending on the settings
located in their object type), if a dereference occurs at an IRQL level of dispatch or higher, and
this dereference causes the pointer count to drop to 0, the system would crash if it attempted to
immediately free the memory of a paged-pool object. (Recall that such access is illegal because
the page fault will never be serviced.) In this scenario, the object manager will perform a deferred
delete operation, queuing the operation on a worker thread running at passive level (IRQL 0).
We’ll describe more about system worker threads later in this chapter.

160

Another scenario that requires deferred deletion is when dealing with Kernel Transaction
Manager (KTM) objects. In some scenarios, certain drivers may hold a lock related to this object,
and attempting to delete the object will result in the system attempting to acquire this lock.
However, the driver may never get the chance to release its lock, causing a deadlock. When
dealing with KTM objects, driver developers must use ObDereferenceObjectDeferDelete to force
deferred deletion regardless of IRQL level. Finally, the /O manager will also use this mechanism
as an optimization so that certain I/Os can complete more quickly, instead of waiting for the object
manager to delete the object.

Process A System space
Handles
Handle table Event object
— | HandleCount=2 | __
| ReferenceCount=3
Index
: o Other structure
DuplicateHandle *

Process B
Handle table Event object
_ HandleCount=1
ReferenceCount=1
e L,

FIGURE 3-20 Handles and reference counts

Because of the way object retention works, an application can ensure that an object and its
name remain in memory simply by keeping a handle open to the object. Programmers who write
applications that contain two or more cooperating processes need not be concerned that one
process might delete an object before the other process has finished using it. In addition, closing
an application’s object handles won’t cause an object to be deleted if the operating system is still
using it. For example, one process might create a second process to execute a program in the
background; it then immediately closes its handle to the process. Because the operating system
needs the second process to run the program, it maintains a reference to its process object. Only

161

when the background program finishes executing does the object manager decrement the second
process’s reference count and then delete it.

Resource Accounting

Resource accounting, like object retention, is closely related to the use of object handles. A
positive open handle count indicates that some process is using that resource. It also indicates that
some process is being charged for the memory the object occupies. When an object’s handle count
and reference count drop to 0, the process that was using the object should no longer be charged
for it.

Many operating systems use a quota system to limit processes’ access to system resources.
However, the types of quotas imposed on processes are sometimes diverse and complicated, and
the code to track the quotas is spread throughout the operating system. For example, in some
operating systems, an I/O component might record and limit the number of files a process can
open, whereas a memory component might impose a limit on the amount of memory a process’s
threads can allocate. A process component might limit users to some maximum number of new
processes they can create or a maximum number of threads within a process. Each of these limits

is tracked and enforced in different parts of the operating system.

In contrast, the Windows object manager provides a central facility for resource accounting.
Each object header contains an attribute called quota charges that records how much the object
manager subtracts from a process’s allotted paged and/or nonpaged pool quota when a thread in
the process opens a handle to the object.

Each process on Windows points to a quota structure that records the limits and current
values for nonpaged pool, paged pool, and page file usage. These quotas default to 0 (no limit) but
can be specified by modifying registry values. (See NonPagedPoolQuota, PagedPoolQuota, and
PagingFileQuota under HKLM\SY STEM\CurrentControlSet\Session Manager\Memory Manage-
ment.) Note that all the processes in an interactive session share the same quota block (and there’s
no documented way to create processes with their own quota blocks).

Object Names

An important consideration in creating a multitude of objects is the need to devise a
successful system for keeping track of them. The object manager requires the following

information to help you do so:
m A way to distinguish one object from another
m A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an
extension of what most operating systems provide—the ability to name selected resources, files,
pipes, or a block of shared memory, for example. The executive, in contrast, allows any resource
represented by an object to have a name. The second requirement, finding and retrieving an object,
is also satisfied by object names. If the object manager stores objects by name, it can find an
object by looking up its name.

162

Object names also satisfy a third requirement, which is to allow processes to share objects.
The executive’s object namespace is a global one, visible to all processes in the system. One
process can create an object and place its name in the global namespace, and a second process can
open a handle to the object by specifying the object’s name. If an object isn’t meant to be shared

in this way, its creator doesn’t need to give it a name.

To increase efficiency, the object manager doesn’t look up an object’s name each time
someone uses the object. Instead, it looks up a name under only two circumstances. The first is
when a process creates a named object: the object manager looks up the name to verify that it
doesn’t already exist before storing the new name in the global namespace. The second is when a
process opens a handle to a named object: the object manager looks up the name, finds the object,
and then returns an object handle to the caller; thereafter, the caller uses the handle to refer to the
object. When looking up a name, the object manager allows the caller to select either a
case-sensitive or a case-insensitive search, a feature that supports POSIX and other environments

that use case-sensitive file names.

Where the names of objects are stored depends on the object type. Table 3-14 lists the
standard object directories found on all Windows systems and what types of objects have their
names stored there. Of the directories listed, only \BaseNamedObjects and \Global?? are visible to
user programs (see the “Session Namespace” section later in this chapter for more information).

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and
sections have their names stored in a single object directory, no two of these objects can have the
same name, even if they are of a different type. This restriction emphasizes the need to choose
names carefully so that they don’t collide with other names. For example, prefix names with a

GUID and/or combine the name with the user’s security identifier (SID).

Object names are global to a single computer (or to all processors on a multiprocessor
computer), but they’re not visible across a network. However, the object manager’s parse method
makes it possible to access named objects that exist on other computers. For example, the 1/O
manager, which supplies file object services, extends the functions of the object manager to
remote files. When asked to open a remote file object, the object manager calls a parse method,
which allows the I/O manager to intercept the request and deliver it to a network redirector, a
driver that accesses files across the network. Server code on the remote Windows system calls the
object manager and the I/O manager on that system to find the file object and return the

information back across the network.

Object Directories The object directory object is the object manager’s means for supporting
this hierarchical naming structure. This object is analogous to a file system directory and contains
the names of other objects, possibly even other object directories. The object directory object
maintains enough information to translate these object names into pointers to the objects
themselves. The object manager uses the pointers to construct the object handles that it returns to
user-mode callers. Both kernel-mode code (including executive components and device drivers)
and user-mode code (such as subsystems) can create object directories in which to store objects.
For example, the /O manager creates an object directory named \Device, which contains the
names of objects representing I/O devices.

163

TABLE 3-14 Standard Object Directories

Directory Types of Object Names Stored

\GLOBAL?? MS-DOS device names (The \Sessions\0\DosDevices\<LUID>\
Global directories are symbolic links to this directory.)

\ArcNames Symbolic links mapping ARC-style paths to NT-style paths.

\BaseNamedObjects Mutexes, events, semaphores, waitable timers, and section objects
for Session 0 (services).

\Callback Callback objects

\Device Device objects

\Driver Driver objects

\FileSystem File system driver objects and file system recognizer device objects

\KnownDlls Section names and path for known DLLs (DLLs mapped by the
system at startup time)

\NIs Section names for mapped national language support tables

\Objectlypes ames of types of objects

\RPC Control Port objects used by remote procedure calls (RPCs)

\Security ALPC ports used by names of objects specific to the security
subsystem

\Sessions Per-session namespace directory (see the next subsection)

\UMDFCommunicationPorts ~ ALPC ports used by the User-Mode Driver Framework (UMDF)

\Windows Windows subsystem ports and window stations

One security consideration to keep in mind when dealing with named objects is the
possibility of object name squatting. Although object names in different sessions are protected
from each other, there’s no standard protection inside the current session namespace that can be
set with the standard Windows API. This makes it possible for an unprivileged application
running in the same session as a privileged application to access its objects, as described earlier in
the object security subsection. Unfortunately, even if the object creator used a proper DACL to
secure the object, this doesn’t help against the squatting attack, in which the unprivileged
application creates the object before the privileged application, thus denying access to the
legitimate application.

The concept of a private namespace was introduced in Windows Vista to alleviate this issue.
It allows user-mode applications to create object directories through the CreatePrivate-Namespace
API and associate these directories with boundary descriptors, which are special data structures
protecting the directories. These descriptors contain SIDs describing which security principals are

164

allowed access to the object directory. In this manner, a privileged application can be sure that
unprivileged applications will not be able to conduct a denial of service attack against its objects
(this doesn’t stop a privileged application from doing the same, however, but this point is moot).

EXPERIMENT: Looking at the base Named Objects

You can see the list of base objects that have names with the WinObj tool from Sysinternals.
Run Winobj.exe. and click on \BaseNamedObjects, as shown here:

K WHintE - ysinge mals: e mysi nternals.ca m = e =
File Wimor Help
Hame Type Yyrm Link "
,5".11 Glabel Symboliclink "Heielamedbjects
3 Callbark ;_‘,:1 Local Jwmboliclink “HeeMamedidbjects
.5 Device A Restricted ke ctapy
(B Drvver 5}1 Session Symboliclink YSessionshBH DLIMES
&0 FileSatem (X000 000 000 D0 1Fede Wibal... Ewent
-1 GLOBAL? Gk ComCatalogCache Sechan L
0 MerrelObjects m'.ﬂ-.geanWkssu:Event Event
2 MiowmDs [!_}.ﬂwdiu&v_c andeceptld,, Fuvent
= [I:'ELR_FerfMu n_OoneEnu.. Event
- OhjectTypes [I:'CLR_F'-:rfh'I-: n_ZtartEnum.. Ewvent
3 AP Comtral g Cor_Private IPCElock 1736 Sectian
2 Securiny @ Cor_Public_[PCBlock 1736 Sechan B
il- [Sessions M CorDRIPCSetupSenrEven,. Fuent
0 UMECFCormmunicationPorts | g Debug.Memory. 278 Sechan
£ Windows g Dabug. Tracebemarg. 218 Sechan
(D PVENT READVRDATSCL., Buvent
EI} PVEMT_AEADYADOTCL,, Bvent
[I:' EVEMNT_READYADOTSCL.. Ewent
[]::' FiratWinlogonCheck Evenk
f LOADPERF_MUTEX Pluta rit
(I Loa AP SERVER_ACTIVE Event
g mrmGlab alPrplnfa Sechan
[I:'MlainbeP:-rt Event
(W hli2 P rivate P ortd Event
(I hlaPrivate P ortz Event
(T Ml Private P ortd Event
[I:' MWFlushUnateachEuent Event w
sBaselMaree dOhjects

The named objects are shown on the right. The icons indicate the object type.
m Mutexes are indicated with a stop sign.
m Sections (Windows file mapping objects) are shown as memory chips.
m Events are shown as exclamation points.
m Semaphores are indicated with an icon that resembles a traffic signal.
m Symbolic links have icons that are curved arrows.
m Folders indicate object directories.
m Gears indicate other objects, such as ALPC ports.
EXPERIMENT: Tampering with Single instancing

165

Applications such as Windows Media Player and those in Microsoft Office are common
examples of single instancing enforcement through named objects. Notice that when launching the
Wmplayer.exe executable, Windows Media Player appears only once—every other launch simply
results in the window coming back into focus. We can tamper with the handle list by using

Process Explorer to turn the computer into a media mixer! Here’s how:

1. Launch Windows Media Player and Process Explorer, and then view the handle table (by
clicking View, Lower Pane View, and then Handles). You should see a handle containing
CheckForOtherInstanceMutex.

e F'ru:!ssE:q:lnr:r S}-:lr'rt!mals 'nuw::,-'smhm!:l: carm [SLEH-LAPTOP Ad miriskrata] =
Eile Options Miew Process Find Handle Lsers Help

- 1 ajmulﬁ‘ﬂldﬁ@ i N ___§ _

Froces LRy ChwichDela Descriplion Compary Hame
= [it e A Wéindare StartUp Applcation Mierasalt Comportinn
wirlogan == 534 ‘windows Logon dpoicaion Micrazall Coporslion
%Whnbi.aﬂs 12834 “winoh Sveinbeinds E
|| molayer ese 1344 224 Windows Medie Flaer Mierasal Catpeeshion, -
Type = Flams= Handl= Bicomss
Wagzions\ 1 Bam anso0bisets Microcoll WP 70 CheckFodthelnsancebluted b OxdAFO001
beudant WecgiongT\GaceM amad0bjscicholg accemsa sdoaded JIF:E N A (E Iy
tukant WEeszionzh 1 \Baredl amaddbizces_IMEFTHISTORTL. 0143 Jxdridood0
tutant Wazgionzt 1 \Bacehl amad0bjects oozl admiristrator apod bzl callmicics ofd indnwste. OwlAC Ox10ria0n10 r
tiutant Wesaions v \Basehlame d0bjects’ ooz adivismator apadataloaming i ce i winda ! =183 Ox10raonan
Mukant thezaionsb 1 \Bazelamed0bjecks’ oz sdminishvator spadatali callmicicof serdovwshis. OrICC Og1maomo
ukant \Sesaionzb T \Basetl amec0bjecks\ S one s ache Courberbufes de108 O 0FonaT
udant 'wusvm \1\Base amedlbyectsh musznI:Ml.hn Os10C Qd0iFOnD -

T T —1 AR =1 P FrTer] T Tl e

II'IlI.I'.nqr 10 40%: Carmenit C hnr"|! 19.79% Praceisen 4] ||'||'\H|d1 400 Hepdles: G681

2. Right-click on the handle, and select Close Handle. Confirm the action when asked.
3. Now run Windows Media Player again. Notice that this time a second process is created.

4. Go ahead and play a different song in each instance. You can also use the Sound Mixer in
the system tray (click on the Volume icon) to select which of the two processes will have greater

volume, effectively creating a mixing environment.

Instead of closing a handle to a named object, an application could have run on its own
before Windows Media Player and created an object with the same name. In this scenario,
Windows Media Player would never run, fooled into believing it was already running on the

system.

Symbolic Links In certain file systems (on NTFS and some UNIX systems, for example), a
symbolic link lets a user create a file name or a directory name that, when used, is translated by
the operating system into a different file or directory name. Using a symbolic link is a simple
method for allowing users to indirectly share a file or the contents of a directory, creating a
cross-link between different directories in the ordinarily hierarchical directory structure.

The object manager implements an object called a symbolic link object, which performs a
similar function for object names in its object namespace. A symbolic link can occur anywhere
within an object name string. When a caller refers to a symbolic link object’s name, the object

manager traverses its object namespace until it reaches the symbolic link object. It looks inside the

166

symbolic link and finds a string that it substitutes for the symbolic link name. It then restarts its

name lookup.

One place in which the executive uses symbolic link objects is in translating MS-DOS-style
device names into Windows internal device names. In Windows, a user refers to hard disk drives
using the names C:, D:, and so on and serial ports as COM1, COM2, and so on. The Windows
subsystem makes these symbolic link objects protected, global data by placing them in the object
manager namespace under the \Global?? directory.

Session Namespace

Services have access to the global namespace, a namespace that serves as the first instance of
the namespace. Additional sessions (including a console user) are given a session-private view of
the namespace known as a local namespace. The parts of the namespace that are localized for each
session include \DosDevices, \Windows, and \BaseNamedObjects. Making separate copies of the
same parts of the namespace is known as instancing the namespace. Instancing \DosDevices
makes it possible for each user to have different network drive letters and Windows objects such
as serial ports. On Windows, the global \DosDevices directory is named \Global?? and is the
directory to which \DosDevices points, and local \DosDevices directories are identified by the

logon session ID.

The \Windows directory is where Win32k.sys creates the interactive window station,
\WinSta0. A Terminal Services environment can support multiple interactive users, but each user
needs an individual version of WinSta0 to preserve the illusion that he or she is accessing the
predefined interactive window station in Windows. Finally, applications and the system create

shared objects in \BaseNamedObjects, including events, mutexes, and memory sections.

If two users are running an application that creates a named object, each user session must
have a private version of the object so that the two instances of the application don’t interfere with

one another by accessing the same object.

The object manager implements a local namespace by creating the private versions of the
three directories mentioned under a directory associated with the user’s session under \Sessions\n
(where n is the session identifier). When a Windows application in remote session two creates a
named event, for example, the object manager transparently redirects the object’s name from
\BaseNamedObjects to \Sessions\2\BaseNamedObjects.

All object manager functions related to namespace management are aware of the instanced
directories and participate in providing the illusion that nonconsole sessions use the same
namespace as the console session. Windows subsystem DLLs prefix names passed by Windows
applications that reference objects in \DosDevices with \?? (for example, C:\Windows becomes
\?2\C:\Windows). When the object manager sees the special \?? prefix, the steps it takes depends
on the version of Windows, but it always relies on a field named DeviceMap in the executive
process object (EPROCESS, which is described further in Chapter 5) that points to a data structure

shared by other processes in the same session.

The DosDevicesDirectory field of the DeviceMap structure points at the object manager
directory that represents the process’s local \DosDevices. When the object manager sees a
reference to \??, it locates the process’s local \DosDevices by using the DosDevicesDirectory field

167

of the DeviceMap. If the object manager doesn’t find the object in that directory, it checks the
DeviceMap field of the directory object, and if it’s valid it looks for the object in the directory
pointed to by the GlobalDosDevicesDirectory field of the DeviceMap structure, which is always
\Global??. Under certain circumstances, applications that are Terminal Services—aware need to
access objects in the console session even if the application is running in a remote session. The
application might want to do this to synchronize with instances of itself running in other remote
sessions or with the console session. For these cases, the object manager provides the special
override ‘“\Global” that an application can prefix to any object name to access the
global namespace. For example, an application in session two opening an object named
\Global\ApplicationInitialized is directed to \BaseNamedObjects\Applicationlnitialized instead of
\Sessions\2\BaseNamedObjects\ApplicationInitialized.

An application that wants to access an object in the global \DosDevices directory does not
need to use the \Global prefix as long as the object doesn’t exist in its local \DosDevices directory.
This is because the object manager will automatically look in the global directory for the object if
it doesn’t find it in the local directory. Session directories are isolated from each other, and
administrative privileges are required to create a global object (except for section objects). A
special privilege named create global object is verified before allowing such operations.

EXPERIMENT: Viewing Namespace instancing

You can see the separation between the session 0 namespace and other session namespaces as
soon as you log in. The reason you can is that the first console user is logged in to session 1 (while
services run in session 0). Run Winobj.exe, and click on the \Sessions directory. You’ll see a
subdirectory with a numeric name for each active session. If you open one of these directories,
you’ll see subdirectories named \DosDevices, \Windows, and \BaseNamedObjects, which are the
local namespace subdirectories of the session. The following screen shot shows a local

namespace:

168

; File ‘Wisww _I;hlp
1 o [#
(S) [Wame Type Symlink =
1 5' S‘EN':ME 4o | ;','J Global Bermpoliclink \Bae Mameddb) e
‘1:5 ‘::: C::;El:-a:LnE Hlegs | ﬁ Lacal Swrnboliclink O\ Zessian A hEazeMN amed Dbjects
ro- @ Device LA Restricted Dlr‘tl:‘ttlr-)' . - &
I,-_.I Dirraer | 5.! Seszion 5!..ll'l'|bD|I\:|.II'Ik aersianshEROLINES
- FileSyrtern G0 NET CLR Data Perf Libra, Mutant
el | &5 MET CLR Metworking_P.. Futant
[KernelObjrcts | @) HET Dara Providerfor ., Mutane
(35 KrewnDlls | () WNET Dintn Prosadecfor 5. Mutant
s g A VL MET Frameweark Perf Lii, Butant
(T3 ObjectTypes | G I M SFTHISTORYL. Putant
..[I3 APC Canbral | & I SHMSFTHISTOR YL Pelutamt
-0 Secunty DO rewChe ckEz Micd.., Rukant
2-{L3 Sessians | @_Dnrmﬁﬁr_lhﬂnde_ FAutank
=an | @ _SHuzesist s Flutant
| EHE Dosllevices | D ALTTAR_AUMMNING_ MU, hdutass
- 00000000 -000003e4 || ¢ pITS Pedf Libmn Lack ... Mutant
i -] IMNOA-NOMNDRCS | o BPSIFT_ HecWark shapS.. Sechion
0 Do0RnON-N0NLTeRe | g e rsladn inistratora,. Mutant
:' [:' 1 e :'ﬁ clumelzdminiztetonrae, Idatant
I_I !j:a:eﬁ atm:t d L @ ciluserslydminiztratora,. Mutant
HE Ij .I:I Dsl:lzjl.lille: @ clusersladministratorla.. Fdutant
g L-rJ 53 Windows VD clusessladministratoria,. MUkt
i | G Users_fdrmini strator_., Secton
“ L BMNOLINES @ e :
23 UMDFCommunicationParts E@E:_chrs_-ﬂdmwmmr_... Seckon
-3 Windoves GO _Uzers_Administrator_... Section |
;.,'J_ES'SiI:II'IS"I,].:'I:ﬁ Bl rh:l;'.lrnzl:ilil b-J:ct]

Next run Process Explorer and select a process in your session (such as Explorer.exe), and
then view the handle table (by clicking View, Lower Pane View, and then Handles). You should
see a handle to \Windows\WindowStations\WinSta0 underneath \Sessions\n, where n is the

session ID.

169

7 Process Bplorer - Sysirteimals: waw sysirtermals.com |ALEX-LAPTOP\Administrtor] o | @

Fil: Optiors Mew Process Find Handle Users Help

| o=

Frocess . P CPU CSwitchDeta [escription Company Hame Inteqriy ~ *
B cusnene 40 372 Cliert Server Runtime Process Microsolt Comeration Swstemn ||
G devervane 1792 8 Microscft Vizual Shudio 2002 Mizrozolt Carporaticn High
E DPCs n'a 415 Defered Frocedure Callz
B dumese 1744 Desktop YWindow Manaoer Mizrosolt Corporation High

= M esploreress 1800 2 indows Explorer Micresolt Corporaticn High -

Tyoe ; Hame Hande bomess

Thrzad expiorer.exe(1 500} 3020 0575 DwOOIFFFFF

[hrzad explorer.e<e(1 800} 3716 L0 [w00TFFFFF

Thrzad e:-:pbrer eae(1 800} 2452 0D O=001FFFFF

WindowStalion MindowshwindowStators nStal vl Dw000FOSY E
WindowStalion \Sessions\] Wnd:um'\WmdDNSlahomeStaI] Do DR0O0FOIFF —

CPU Usage: 18.3%% Commit Charge: 1LOS% Pracesses: 37 Threads: 432 Handles: 11654

Object Filtering

Windows includes a filtering model in the object manager, similar to the file system
minifilter model described in Chapter 7. One of the primary benefits of this filtering model is the
ability to use the altitude concept that these existing filtering technologies use, which means that
multiple drivers can filter object manager events at appropriate locations in the filtering stack.
Additionally, drivers are permitted to intercept calls such as NtOpenThread and NtOpenProcess
and even to modify the access masks being requested from the process manager. This allows
protection against certain operations on an open handle—however, an open operation cannot be
entirely blocked because doing so would too closely resemble a malicious operation (processes

that could never be managed).

Furthermore, drivers are able to take advantage of both pre and post callbacks, allowing them
to prepare for a certain operation before it occurs, as well as to react or finalize information after
the operation has occurred. These callbacks can be specified for each operation (currently, only
open, create, and duplicate are supported) and be specific for each object type (currently, only
process and thread objects are supported). For each callback, drivers can specify their own internal
context value, which can be returned across all calls to the driver or across a pre/post pair. These
callbacks can be registered with the ObRegisterCallback API and unregistered with the
ObUnregisterCallback API—it is the responsibility of the driver to ensure deregistration happens.

Use of the APIs is restricted to images that have certain characteristics:

m The image must be signed, even on 32-bit computers, according to the same rules set forth
in the Kernel Mode Code Signing (KMCS) policy. (Code integrity will be discussed later in this
chapter.) The image must be compiled with the /integritycheck linker flag, which sets the
IMAGE DLLCHARACTERISTICS FORCE INTEGRITY value in the PE header. This instructs
the memory manager to check the signature of the image regardless of any other defaults that may

not normally result in a check.

170

m The image must be signed with a catalog containing cryptographic per-page hashes of the
executable code. This allows the system to detect changes to the image after it has been loaded in

memory.

3.3 Synchronization

The concept of mutual exclusion is a crucial one in operating systems development. It refers
to the guarantee that one, and only one, thread can access a particular resource at a time. Mutual
exclusion is necessary when a resource doesn’t lend itself to shared access or when sharing would
result in an unpredictable outcome. For example, if two threads copy a file to a printer port at the
same time, their output could be interspersed. Similarly, if one thread reads a memory location
while another one writes to it, the first thread will receive unpredictable data. In general, writable
resources can’t be shared without restrictions, whereas resources that aren’t subject to
modification can be shared. Figure 3-21 illustrates what happens when two threads running on
different processors both write data to a circular queue.

Time

Processor A Processor B

Get queue tail
Insert data at current location

Get queue tail
Increment tail pointer

Insert data at current location /#ERRORYS
Increment tail pointer

FIGURE 3-21 Incorrect sharing of memory

Because the second thread obtained the value of the queue tail pointer before the first thread
had finished updating it, the second thread inserted its data into the same location that the first
thread had used, overwriting data and leaving one queue location empty. Even though Figure 3-21
illustrates what could happen on a multiprocessor system, the same error could occur on a
single-processor system if the operating system were to perform a context switch to the second

thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical sections. To ensure
correct code, only one thread at a time can execute in a critical section. While one thread is writing
to a file, updating a database, or modifying a shared variable, no other thread can be allowed to
access the same resource. The pseudocode shown in Figure 3-21 is a critical section that
incorrectly accesses a shared data structure without mutual exclusion. The issue of mutual
exclusion, although important for all operating systems, is especially important (and intricate) for

171

a tightly coupled, symmetric multiprocessing (SMP) operating system such as Windows, in which
the same system code runs simultaneously on more than one processor, sharing certain data
structures stored in global memory. In Windows, it is the kernel’s job to provide mechanisms that
system code can use to prevent two threads from modifying the same structure at the same time.
The kernel provides mutual-exclusion primitives that it and the rest of the executive use to
synchronize their access to global data structures.

Because the scheduler synchronizes access to its data structures at DPC/dispatch level IRQL,
the kernel and executive cannot rely on synchronization mechanisms that would result in a page
fault or reschedule operation to synchronize access to data structures when the IRQL is
DPC/dispatch level or higher (levels known as an elevated or high IRQL). In the following
sections, you’ll find out how the kernel and executive use mutual exclusion to protect theirglobal
data structures when the IRQL is high and what mutual-exclusion and synchronization
mechanisms the kernel and executive use when the IRQL is low (below DPC/dispatch level).

3.3.1 High-IRQL Synchronization

At various stages during its execution, the kernel must guarantee that one, and only one,
processor at a time is executing within a critical section. Kernel critical sections are the code
segments that modify a global data structure such as the kernel’s dispatcher database or its DPC
queue. The operating system can’t function correctly unless the kernel can guarantee that threads

access these data structures in a mutually exclusive manner.

The biggest area of concern is interrupts. For example, the kernel might be updating a global
data structure when an interrupt occurs whose interrupt-handling routine also modifies the
structure. Simple single-processor operating systems sometimes prevent such a scenario by
disabling all interrupts each time they access global data, but the Windows kernel has a more
sophisticated solution. Before using a global resource, the kernel temporarily masks those
interrupts whose interrupt handlers also use the resource. It does so by raising the processor’s
IRQL to the highest level used by any potential interrupt source that accesses the global data. For
example, an interrupt at DPC/dispatch level causes the dispatcher, which uses the dispatcher
database, to run. Therefore, any other part of the kernel that uses the dispatcher database raises the
IRQL to DPC/dispatch level, masking DPC/dispatch-level interrupts before using the dispatcher
database.

This strategy is fine for a single-processor system, but it’s inadequate for a multiprocessor
configuration. Raising the IRQL on one processor doesn’t prevent an interrupt from occurring on
another processor. The kernel also needs to guarantee mutually exclusive access across several

processors.

Interlocked Operations
The simplest form of synchronization mechanisms rely on hardware support for

multiprocessor-safe manipulation of integer values and for performing comparisons. They include

functions such as InterlockedIncrement, InterlockedDecrement, InterlockedExchange, and

172

InterlockedCompareExchange. The InterlockedDecrement function, for example, uses the x86
lock instruction prefix (for example, lock xadd) to lock the multiprocessor bus during the
subtraction operation so that another processor that’s also modifying the memory location being
decremented won’t be able to modify it between the decrementing processor’s read of the original
value and its write of the decremented value. This form of basic synchronization is used by the
kernel and drivers. In today’s Microsoft compiler suite, these functions are called intrinsic because
the code for them is generated in inline assembler, directly during the compilation phase, instead
of going through a function call. (It’s likely that pushing the parameters onto the stack, calling the
function, copying the parameters into registers, and then popping the parameters off the stack and
returning to the caller would be a more expensive operation than the actual work the function is

supposed to do in the first place.)

Spinlocks

The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a
spinlock. A spinlock is a locking primitive associated with a global data structure such as the DPC

queue shown in Figure 3-22.

Processor A Processor B
Do Do
Try to acquire Try to acquire
DPC queue Spinlock DPC queue
spinlock spinlock
Until SUCCESS Until SUCCESS
Begin Begin
Remove DPC from queue Add DPC from queue
End DPC queue End
Release DPC queue spinlock Release DPC queue spinlock

1 Critical section

FIGURE 3-22 Using a spinlock

Before entering either critical section shown in Figure 3-22, the kernel must acquire the
spinlock associated with the protected DPC queue. If the spinlock isn’t free, the kernel keeps
trying to acquire the lock until it succeeds. The spinlock gets its name from the fact that the kernel
(and thus, the processor) waits, “spinning,” until it gets the lock.Spinlocks, like the data structures
they protect, reside in nonpaged memory mapped into the system address space. The code to
acquire and release a spinlock is written in assembly language for speed and to exploit whatever
locking mechanism the underlying processor architecture provides. On many architectures,

spinlocks are implemented with a hardwaresupported test-and-set operation, which tests the value

173

of a lock variable and acquires the lock in one atomic instruction. Testing and acquiring the lock
in one instruction prevents a second thread from grabbing the lock between the time the first
thread tests the variable and the time it acquires the lock. Additionally, the lock instruction
mentioned earlier can also be used on the test-and-set operation, resulting in the combined lock bts
assembly operation, which also locks the multiprocessor bus; otherwise, it would be possible for
more than one processor to atomically perform the operation (without the lock, the operation is

only guaranteed to be atomic on the current processor).

All kernel-mode spinlocks in Windows have an associated IRQL that is always DPC/dispatch
level or higher. Thus, when a thread is trying to acquire a spinlock, all other activity at the
spinlock’s TRQL or lower ceases on that processor. Because thread dispatching happens at
DPC/dispatch level, a thread that holds a spinlock is never preempted because the IRQL masks the
dispatching mechanisms. This masking allows code executing in a critical section protected by a
spinlock to continue executing so that it will release the lock quickly. The kernel uses spinlocks
with great care, minimizing the number of instructions it executes while it holds a spinlock. Any
processor that attempts to acquire the spinlock will essentially be busy, waiting indefinitely,
consuming power (a busy wait results in 100% CPU usage) and performing no actual work.

On newer (Pentium 4 and later) processors, a special pause assembly instruction can be
inserted in busy wait loops. This instruction offers a hint to the processor that the loop instructions
it is processing are part of a spinlock (or a similar construct) acquisition loop. The instruction

provides three benefits:

m It significantly reduces power usage by delaying the core ever so slightly instead of

continuously looping.

m On HyperThreaded cores, it allows the CPU to realize that the “work” being done by the
spinning logical core is not terribly important and awards more CPU time to the second logical

core instead.

m Because a busy wait loop results in a storm of read requests coming to the bus from the
waiting thread (which may be generated out-of-order), the CPU will attempt to correct for
violations of memory order as soon as it detects a write (that is, when the owning thread releases
the lock). Thus, as soon as the spinlock is released, the CPU will reorder any pending memory
read operations to ensure proper ordering. This reordering results in a large penalty in system
performance and can be avoided with the pause instruction.

The kernel makes spinlocks available to other parts of the executive through a set of kernel
functions, including KeAcquireSpinLock and KeReleaseSpinLock. Device drivers, for example,
require spinlocks to guarantee that device registers and other global data structures are accessed by
only one part of a device driver (and from only one processor) at a time. Spinlocks are not for use
by user programs—user programs should use the objects described in the next section. Device
drivers also need to protect access to their own data structures from interrupts associated with
themselves. Because the spinlock APIs typically only raise the IRQL to DPC/dispatch level, this
isn’t enough to protect against interrupts. For this reason, the kernel also exports the
KeAcquirelnterruptSpinLock and KeReleaselnterruptSpinLock APIs that take as a parameter the
KINTERRUPT object discussed at the beginning of this chapter. The system will look inside the

174

interrupt object for the associated DIRQL with the interrupt and raise the IRQL to the appropriate
level to ensure correct access to structures shared with the ISR. Devices can use the
KeSynchronizeExecution API to synchronize an entire function with an

ISR, instead of just a critical section. In all cases, the code protected by an interrupt spinlock
must execute extremely quickly—any delay causes higher than normal interrupt latency and will
have significant negative performance effects.

Kernel spinlocks carry with them restrictions for code that uses them. Because spinlocks
always have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a
spinlock will crash the system if it attempts to make the scheduler perform a dispatch operation or
if it causes a page fault.

Queued Spinlocks

To increase the scalability of spinlocks, a special type of spinlock, called a queued spinlock,
is used in most circumstances instead of a standard spinlock. A queued spinlock works like this:
When a processor wants to acquire a queued spinlock that is currently held, it places its identifier
in a queue associated with the spinlock. When the processor that’s holding the spinlock releases it,
it hands the lock over to the first processor identified in the queue. In the meantime, a processor
waiting for a busy spinlock checks the status not of the spinlock itself but of a per-processor flag
that the processor ahead of it in the queue sets to indicate that the waiting processor’s turn has

arrived.

The fact that queued spinlocks result in spinning on per-processor flags rather than global
spinlocks has two effects. The first is that the multiprocessor’s bus isn’t as heavily trafficked by
interprocessor synchronization. The second is that instead of a random processor in a waiting
group acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to the
lock. FIFO ordering means more consistent performance across processors accessing the same
locks.

Windows defines a number of global queued spinlocks by storing pointers to them in an array
contained in each processor’s processor region control block (PRCB). A global spinlock can be
acquired by calling KeAcquireQueuedSpinLock with the index into the PRCB array at which the
pointer to the spinlock is stored. The number of global spinlocks has grown in each release of the
operating system, and the table of index definitions for them is published in the WDK header file
Ntddk.h. Note, however, that acquiring one of these queued spinlocks from a device driver is an
unsupported and heavily frowned upon operation. These locks are reserved for the kernel’s own
internal use.

EXPERIMENT: Viewing global Queued Spinlocks

You can view the state of the global queued spinlocks (the ones pointed to by the queued
spinlock array in each processor’s PCR) by using the !qlocks kernel debugger command. In the
following example, the page frame number (PFN) database queued spinlock is held by processor 1,
and the other queued spinlocks are not acquired. (The PFN database is described in Chapter 9.)

175

lkd> !qlocks

Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt
Processor Number

Lock Name 0 1

KE - Dispatcher

MM - Expansion

MM - PFN O

MM - System Space

. CC-Vacb

10. CC - Master

S O N N o

Instack Queued Spinlocks

Driver developers who recognized the significant improvement in the queued spinlock
mechanism (over standard spinlocks) might have been disappointed to know that these locks were
not available to third-party developers. Device drivers can now use dynamically allocated queued
spinlocks with the KeAcquireInStackQueuedSpinLock and KeReleaseInStackQueuedSpinLock
functions. Several components—including the cache manager, executive pool manager, and
NTFS—take advantage of these types of locks (when a global static queued spinlock would
simply be too wasteful), and the functions are documented in the WDK for use by third-party

driver writers.

KeAcquireInStackQueuedSpinLock takes a pointer to a spinlock data structure and a
spinlock queue handle. The spinlock handle is actually a data structure in which the kernel stores
information about the lock’s status, including the lock’s ownership and the queue of processors
that might be waiting for the lock to become available. For this reason, the handle shouldn’t be a
global variable. It is usually a stack variable, guaranteeing locality to the caller thread, and is

responsible for the InStack part of the spinlock and API name.

Executive Interlocked Operations

The kernel supplies a number of simple synchronization functions constructed on spinlocks
for more advanced operations, such as adding and removing entries from singly and doubly linked
lists. Examples include ExInterlockedPopEntryList and ExInterlockedPushEntryList for singly
linked lists, and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for doubly
linked lists. All these functions require a standard spinlock as a parameter and are used throughout
the kernel and device drivers.

Instead of relying on the standard APIs to acquire and release the spinlock parameter, these
functions place the code required inline and also use a different ordering scheme. Whereas the Ke
spinlock APIs will first test and set the bit to see whether the lock is released and then atomically
do a locked test-and-set operation to actually make the acquisition, these routines will disable
interrupts on the processor and immediately attempt an atomic test-and-set. If the initial attempt
fails, interrupts are enabled again, and the standard busy waiting algorithm continues until the

test-and-set operation returns 0—in which case the whole function is restarted again. Because of

176

these subtle differences, a spinlock used for the executive interlocked functions must not be used
with the standard kernel APIs discussed previously. Naturally, noninterlocked list operations must
not be mixed with interlocked operations.

Note Certain of the executive interlocked operations actually silently ignore the spinlock
when possible. For example, the ExInterlockedIncrementLong or ExInterlockedCompare-
Exchange APIs actually use the same lock prefix used by the standard interlocked functions and
the intrinsic functions. These functions were useful on older systems (or non-x86 systems) where
the lock operation was not suitable or available. For this reason, these calls are now deprecated in

favor of the intrinsic functions.

3.3.2 Low-IRQL Synchronization

Executive software outside the kernel also needs to synchronize access to global data
structures in a multiprocessor environment. For example, the memory manager has only one page
frame database, which it accesses as a global data structure, and device drivers need to ensure that
they can gain exclusive access to their devices. By calling kernel functions, the executive can

create a spinlock, acquire it, and release it.

Spinlocks only partially fill the executive’s needs for synchronization mechanisms, however.
Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under the

following strictly limited circumstances:

m The protected resource must be accessed quickly and without complicated interactions with
other code.

m The critical section code can’t be paged out of memory, can’t make references to pageable
data, can’t call external procedures (including system services), and can’t generate interrupts or

exceptions.

These restrictions are confining and can’t be met under all circumstances. Furthermore, the
executive needs to perform other types of synchronization in addition to mutual exclusion, and it

must also provide synchronization mechanisms to user mode.

There are several additional synchronization mechanisms for use when spinlocks are not

suitable:
m Kernel dispatcher objects
m Fast mutexes and guarded mutexes
m Executive resources
m Pushlocks

Additionally, user-mode code, which also executes at low IRQL, must be able to have its

own locking primitives. Windows supports various user-mode specific primitives:

m Condition variables (CondVars)

177

m Slim reader-writer locks (SRWs)
m Run once initialization (InitOnce)
m Critical sections

We’ll take a look at the user-mode primitives and their underlying kernel-mode support later;
for now we’ll focus on kernel-mode objects. Table 3-15 serves as a reference that compares and
contrasts the capabilities of these mechanisms and their interaction with kernel-mode APC

delivery.

TABLE 3-15 Kernel Synchronization Mechanisms

Exposed Disables Disables Supports
for Use Normal Special Supports Shared and
by Device Kernel-Mode Kernel- Recursive Exclusive
Drivers APCs Mode APCs Acquisition Acquisition
Kernel dispatcher ~ Yes Yes No Yes No
mutexes
Kernel dispatcher ~ Yes No No No No
semaphares or
events
Fast mutexes Yes Yes Yes No No
Guarded mutexes VYes Yes Yes No No
Pushlocks No No No No Yes
Executive resources Yes No No Yes Yes

Kernel Dispatcher Objects

The kernel furnishes additional synchronization mechanisms to the executive in the form of
kernel objects, known collectively as dispatcher objects. The user-visible synchronization objects
acquire their synchronization capabilities from these kernel dispatcher objects. Each user-visible
object that supports synchronization encapsulates at least one kernel dispatcher object. The
executive’s synchronization semantics are visible to Windows programmers through the
WaitForSingleObject and WaitForMultipleObjects functions, which the Windows subsystem
implements by calling analogous system services that the object manager supplies. A thread in a
Windows application can synchronize with a Windows process, thread, event, semaphore, mutex,
waitable timer, I/O completion port, or file object.

One other type of executive synchronization object worth noting is called an executive
resource. Executive resources provide exclusive access (like a mutex) as well as shared read
access (multiple readers sharing read-only access to a structure). However, they’re available only
to kernel-mode code and thus are not accessible from the Windows API. Executive resources are

178

not dispatcher objects but data structures, allocated directly from nonpaged pool, that have their
own specialized services to initialize, lock, release, query, and wait for them. The remaining

subsections describe the implementation details of waiting for dispatcher objects.

Waiting for Dispatcher Objects. A thread can synchronize with a dispatcher object by waiting
for the object’s handle. Doing so causes the kernel to put the thread in a wait state.

At any given moment, a synchronization object is in one of two states: signaled state or
nonsignaled state. A thread can’t resume its execution until its wait is satisfied. This change
occurs when the dispatcher object whose handle the thread is waiting for also undergoes a state
change, from the nonsignaled state to the signaled state (when a thread sets an event object, for
example). To synchronize with an object, a thread calls one of the wait system services that the
object manager supplies, passing a handle to the object it wants to synchronize with. The thread
can wait for one or several objects and can also specify that its wait should be canceled if it hasn’t
ended within a certain amount of time. Whenever the kernel sets an object to the signaled state,
the kernel’s KiWaitTest function (or sometimes, specialized inline code) checks to see whether
any threads are waiting for the object and not also waiting for other objects to become signaled. If
there are, the kernel releases one or more of the threads from their waiting state so that they can

continue executing.

The following example of setting an event illustrates how synchronization interacts with

thread dispatching:
m A user-mode thread waits for an event object’s handle.

m The kernel changes the thread’s scheduling state to waiting and then adds the thread to a
list of threads waiting for the event.

m Another thread sets the event.

m The kernel marches down the list of threads waiting for the event. If a thread’s conditions
for waiting are satisfied (see the following note), the kernel takes the thread out of the waiting
state. If it is a variable-priority thread, the kernel might also boost its execution priority. (For

details on thread scheduling, see Chapter 5.)

Note Some threads might be waiting for more than one object, so they continue waiting,
unless they specified a WaitAny wait, which will wake them up as soon as one object (instead of
all) is signaled.

What Signals an Object? The signaled state is defined differently for different objects. A
thread object is in the nonsignaled state during its lifetime and is set to the signaled state by the
kernel when the thread terminates. Similarly, the kernel sets a process object to the signaled state
when the process’s last thread terminates. In contrast, the timer object, like an alarm, is set to “go
off” at a certain time. When its time expires, the kernel sets the timer object to the signaled state.

When choosing a synchronization mechanism, a program must take into account the rules
governing the behavior of different synchronization objects. Whether a thread’s wait ends when an
object is set to the signaled state varies with the type of object the thread is waiting for, as Table
3-16 illustrates.

179

TABLE 3-16 Definitions of the Signaled State
Set to Signaled State When Effect on Waiting Threads

Object Type
Process
Thread

File

Debug object

Event (notification type)

Event (synchronization type)

Gate

Keyed event

Semaphore

Timer (notification type)
Timer (synchronization type)

Mutex

Queue

Last thread terminates
Thread terminates
/0 operation completes

Debug message is queued to
the object

Thread sets the event

Thread sets the event

Thread signals the gate

Thread sets event with a key

Semaphore count drops by 1

Set time arrives or time
interval expires

Set time arrives or time
interval expires

Thread releases the mutex

ltem is placed on queue

All released
All released
All released

All released

All released

One thread released; event object
reset

First waiting thread released

Thread waiting for key and which
Is of same process as signaler is
released

One thread released

All released

One thread released

One thread released

One thread released

When an object is set to the signaled state, waiting threads are generally released from their

wait states immediately. Some of the kernel dispatcher objects and the system events that induce
their state changes are shown in Figure 3-23.

180

Systern events and Effect of signaled state
Dispatcher objact resulting state change on walting threads

Craming thvead
releases the mures.

i -

Mutex (kernel-
mode use onlyh

Kernel resumes ons

degchia ikt walting thread.
-

—

signaled

i
'

Resumed fhraad
aoguines mhe mmrey.

O thraod or ofher
Thread releases fhe mufey.

Kernel resumes one
wialting thread.

Mutex {exporied to

user mode) sl ek

T

Resummed fihread
aoguiras The muTey.

Signaked

[
Ij

Qe THread rEeases fhe
semaphare, [Feeing o resource.
Kernel resumss ons
inbien it [l or more walting threads.

e —
& Thread ooguings The semapione.
AAONE FESDLTTES OFE Nal OWaiiaiie
& thread sefs the event.

—

Signaked

[
If

Hernel resumes one

Event reknaked
a or more walting threads.

o

Earnal resimes one
o move Threads

Dadicated riwaad sets
one event i the avent pak

skynatked

i
I'!

\

Kernel resumes walting

i
I.l'

Event palr rekgnakd signaked benb iyt
i o
ST eSS Tine
S e JeaionT e Tivreaa
Timer exples.
—
Kam=l resumas all
Timer |Morskanakd Signaked waiting treacs.
"\-n.____ s
A threod grelinithlizes
the timer,

Thread ferminghes.

Eemel resumes all

Thireid | | Wi d walting threads.

Signaked

I
IJ

A hread refnlilZes
The thrend obgear.

FIGURE 3-23 Selkected kernal dispatcher objects

For example, a notification event object (called a manual reset event in the Windows API) is
used to announce the occurrence of some event. When the event object is set to the signaled state,
all threads waiting for the event are released. The exception is any thread that is waiting for more
than one object at a time; such a thread might be required to continue waiting until additional
objects reach the signaled state.

In contrast to an event object, a mutex object has ownership associated with it (unless it was
acquired during a DPC). It is used to gain mutually exclusive access to a resource, and only one
thread at a time can hold the mutex. When the mutex object becomes free, the kernel sets it to the
signaled state and then selects one waiting thread to execute. The thread selected by the kernel

acquires the mutex object, and all other threads continue waiting.

This brief discussion wasn’t meant to enumerate all the reasons and applications for using the

various executive objects but rather to list their basic functionality and synchronization behavior.

181

For information on how to put these objects to use in Windows programs, see the Windows
reference documentation on synchronization objects or Jeffrey Richter’s book Windows via
C/C++.

Data Structures Two data structures are key to tracking who is waiting for what:
dispatcher headers and wait blocks. Both these structures are publicly defined in the WDK include
file Ntddk.h. The definitions are reproduced here for convenience:

1. typedef struct DISPATCHER HEADER {
2. union {

3. struct {

4. UCHAR Type;

5. union {

6. UCHAR Abandoned;

7. UCHAR Absolute;

8. UCHAR NpxlIrql;

9. BOOLEAN Signalling;

10. } DUMMYUNIONNAME;

11. union {

12. UCHAR Size;

13. UCHAR Hand;

14. } DUMMYUNIONNAME?2;

15. union {

16. UCHAR Inserted;

17. BOOLEAN DebugActive;

18. BOOLEAN DpcActive;

19. } DUMMYUNIONNAMES3;

20. } DUMMYSTRUCTNAME;

21. volatile LONG Lock;

22. } DUMMYUNIONNAME;

23. LONG SignalState;

24. LIST ENTRY WaitListHead;

25. } DISPATCHER HEADER;

26. typedefstruct KWAIT BLOCK {
27. LIST ENTRY WaitListEntry;

28. struct KTHREAD *Thread;

29. PVOID Object;

30. struct KWAIT BLOCK *NextWaitBlock;
31. USHORT WaitKey;

32. UCHAR WaitType;

33. UCHAR SpareByte;

34. #if defined(AMD64)

35. LONG SpareLong;

36. #endif

37. } KWAIT BLOCK, *PKWAIT BLOCK, *PRKWAIT BLOCK;

182

The dispatcher header is a packed structure because it needs to hold lots of information in a
fixed-size structure. One of the main tricks is to define mutually exclusive flags at the same
memory location (offset) in the structure. By using the Type field, the kernel knows which of
these fields actually applies. For example, a mutex can be abandoned, but a timer can be absolute
or relative. Similarly, a timer can be inserted into the timer list, but the debug active field only
makes sense for processes. On the other hand, the dispatcher header does contain information
generic for any dispatcher object: the object type, signaled state, and a list of the threads waiting
for that object.

Note The debug active flag used to determine whether a process is currently being debugged
is actually a bit mask that specifies which debug registers on the CPU are in use. Because the valid
debug registers are DR0-3, DR6, and DR7, the bit positions for DR4 and 5 are overloaded with
other meanings. For example, the kernel uses the fifth bit (0x20—DR4) to disable CPU cycle time
accounting for the process. (CPU cycle time accounting is described in Chapter 5.)

The wait block represents a thread waiting for an object. Each thread that is in a wait state
has a list of the wait blocks that represent the objects the thread is waiting for. Each dispatcher
object has a list of the wait blocks that represent which threads are waiting for the object. This list
is kept so that when a dispatcher object is signaled, the kernel can quickly determine who is
waiting for that object. The wait block has a pointer to the object being waited for, a pointer to the
thread waiting for the object, and a pointer to the next wait block (if the thread is waiting for more
than one object). It also records the type of wait (any or all) as well as the position of that entry in
the array of handles passed by the thread on the WaitForMultipleObjects call (position 0 if the

thread was waiting for only one object).

Figure 3-24 shows the relationship of dispatcher objects to wait blocks to threads. In this
example, thread 1 is waiting for object B, and thread 2 is waiting for objects A and B. If object A
is signaled, the kernel will see that because thread 2 is also waiting for another object, thread 2
can’t be readied for execution. On the other hand, if object B is signaled, the kernel can ready

thread 1 for execution right away because it isn’t waiting for any other objects.

183

E

Thread objects

Thread 1 Thread 2

‘Wait block list Wait block list

Dispatcher objects

Size | Type
State Wait blocks
Object A [FWait list head— # |— List entry —
Object-type- Thread
specific data « Object
Key | Type
Mext link
Size | Type
F— Thread 2 wailt block
Object B [Wait list head— = #|— Listentry —|+«—1*|— Listentoy —
Object-type- # Thread * Thread
specific data Object Object
Key | Type Key | Type
Mext link Mext link
Thread 1 wait block Thread 2 wait block

FIGURE 3-24 Wait data structures

XPERIMENT: Looking at Wait Queues

You can see the list of objects a thread is waiting for with the kernel debugger’s !thread

command. For example, the following excerpt from the output of a !process command shows that

the thread is waiting for an event object:

1.
2.
3.

4.
5.

kd> Iprocess

8§

THREAD 8952d030 Cid Oacc.050c Teb: 7Fffdf000 Win32Thread: fe82c4
cO WAIT:

(WrUserRequest) UserMode Non-Alertable

89dd01c8 SynchronizationEvent

You can use the dt command to interpret the dispatcher header of the object like this:

1.

2
3.
4

Ikd> dt nt! DISPATCHER_HEADER 89dd01c8
. +Ox000 Type :- Ox1 **

+0x001 Abandoned : 0 **

. +0x001 Absolute : 0 **

184

. +0x001 NpxIrgl : O *©
. +0x001 Signalling :

. +0x002 Hand : Ox4 **

. +0x003

10.+0x0
11.+0x0
12 _.+0x0
13.+0x0
14 _.+0x0

5
6
7. +0x002 Size : Ox4 °*
8
9

03 DebugActive :
03

0 - w

Inserted : 0x89 **
0x89 **
DpcActive : 0x89 -*

00 Lock : -1996226559

04 SignalState :
08 WaitListHead

0
- _LIST_ENTRY [0x89dd01d0 - 0x89dd01d0]

Note that you should ignore the 0x89 value: none of the Inserted, DebugActive, or DpcActive

fields apply to event objects, so the kernel has simply not bothered to initialize those fields to 0 as

an optimization. As a result, they contain whatever value was previously stored. (We can assume a

pointer was there previously because 0x89 seems to be the beginning of the address of the
dispatcher header.) Table 3-17 lists the dispatcher header flags and the objects to which they

apply.

TABLE 3-17 Usage and Meaning of the Dispatcher Header Flags

Flag Applies To
Abandoned Mutexes
Absolute Timers
Mpulrgl Threads
Signaling Gates
Size All objects
Hand Timers
Inserted Timers
Debughctive Processes
DpcActive Mutexes
Lock Gates and
Queues

Meaning

The thread holding the mutex was terminated
The expiration time is absclute, not relative
The IRQL at which the FPU registers were saved

A priority boost should be applied to the woken thread
when the gate is signaled

Size of the object divided by 4

Index into the timer handle table

Set if the timer was inserted into the timer handle table
Specifies if the process is being debugged

The mutex was acquired during a DPC

Used for locking an object without acquiring the
dispatcher lock; actually corresponds to bit 7 (0x20) of the
Type field

Apart from these flags, the Type field contains the identifier for the object. This identifier
corresponds to a number in the KOBJECTS enumeration, which you can dump with the debugger:

1.

0o ~NOoO Ol WN

Ikd> dt nt!_KOBJECTS
EventNotificationObject = 0
EventSynchronizationObject = 1

MutantObject = 2

ProcessObject = 3

Queuelbject = 4

SemaphoreObject =

ThreadObject = 6

5

185

9. GateObject =7

10. TimerNotificationObject = 8

11. TimerSynchronizationObject = 9

12. Spare20bject = 10

13. Spare3Object = 11

14. Spared4Object = 12

15. Spare50bject = 13

16. Spare6Object = 14

17. Spare70bject = 15

18. Spare80bject = 16

19. Spare90bject = 17

20. ApcObject = 18

21. DpcObject = 19

22. DeviceQueueObject = 20

23. EventPairObject = 21

24. InterruptObject = 22

25. ProfileObject = 23

26. ThreadedDpcObject = 24

27. MaximumKernelObject = 25
The wait list head pointers are identical, so there are no waiting threads waiting on this object.
Dumping a wait block for an object that is part of a multiple wait from a thread, or that multiple

threads are waiting on, could yield the following:
1. Ikd> dt nt!_KWAIT_BLOCK 0x879796c8

+0x000 WaitListEntry : _LIST_ENTRY [0x89d65d80 - 0x89d65d80]
+0x008 Thread : 0x87979610 _KTHREAD

+0x00c Object : 0x89d65d78

+0x010 NextWaitBlock : 0x879796e0 _KWAIT_BLOCK

+0x014 WaitKey : O

+0x016 WaitType : Ox1 **

8. +0x017 SpareByte : Ox1 **

N o o~ WON

If the wait list had more than one entry, you could execute the same command on the second
pointer value in the WaitListEntry field of each wait block (by executing !thread on the thread
pointer in the wait block) to traverse the list and see what other threads are waiting for the object.
This would indicate more than one thread waiting on this object. On the other hand, when dealing
with an object that’s part of a collection of objects being waited on by a single thread, you will
have to parse the NextWaitBlock field instead.

Keyed Events

A synchronization object called a keyed event bears special mention because of the role it
plays in user-mode-exclusive synchronization primitives. Keyed events were originally
implemented to help processes deal with low-memory situations when using critical sections, a
user-mode synchronization object we’ll see more about shortly. A keyed event, which is not

186

documented, allows a thread to specify a “key” for which it waits, where the thread wakes when
another thread of the same process signals the event with the same key.

If there is contention, EnterCriticalSection dynamically allocates an event object, and the
thread wanting to acquire the critical section waits for the thread that owns the critical section to
signal it in LeaveCriticalSection. Unfortunately, this introduces a new problem. Before keyed
events were implemented, it was possible for the system to be critically out of memory and for
critical section acquisition to fail because the system was unable to allocate the event object
required. The low-memory condition itself may have been caused by the application trying to
acquire the critical section, so the system would deadlock in this situation. Low memory isn’t the
only scenario that could have caused this to fail: a less likely scenario is handle exhaustion. If the
process had reached its 16 million handle limit, the new handle for the event object could fail.

The failure caused by low-memory conditions would typically be an exception from the code
responsible for acquiring the critical section. Unfortunately, the result would also be a damaged
critical section, which made the situation hard to debug, and the object useless for a reacquisition
attempt. Attempting a LeaveCriticalSection would attempt another event object allocation, further
generating exceptions and corrupting the structure. An initial “solution” to the problem was
introduced through a magic value to the InitializeCriticalSectionAndSpinCount API. By making
the spin count have its high bit set (ORing with the 0x80000000 value), this preallocated the event,
which avoided the issue but reverted back to the scalability problems of Windows NT 4.

Having allocated a global standard event object would not have fixed the issue, because
standard event primitives can only be used for a single object. Each critical section in the process
would still require its own event object, so the same problem would resurface. The
implementation of keyed events allows multiple critical sections (waiters) to use the same global
(per-process) keyed event handle. This allows the critical section functions to operate properly

even when memory is temporarily low.

When a thread signals a keyed event or performs a wait on it, it uses a unique identifier called
a key, which identifies the instance of the keyed event (an association of the keyed event to a
single critical section). When the owner thread releases the keyed event by signaling it, only a
single thread waiting on the key is woken up (the same behavior as synchronization events in
contrast to notification events). Additionally, only the waiters in the current process are awakened,
so the key is even isolated across processes, meaning that there is actually only a single keyed
event object for the entire system. When a critical section uses the keyed event,
EnterCriticalSection sets the key as the address of the critical section and performs a wait.
Returning to critical sections, the use of keyed events was improved even further with the release
of Windows Vista. When EnterCriticalSection calls NtWaitForKeyedEvent to perform a wait on
the keyed event, it can now specify a handle of NULL for the keyed event, telling the kernel that it
was unable to create a keyed event. The kernel recognizes this behavior and uses a global keyed
event named ExpCritSecOutOfMemoryEvent. The primary benefit is that processes don’t need to
waste a handle for a named keyed event anymore because the kernel keeps track of the object and

its references.

However, keyed events are more than just fallback objects for low-memory conditions. When
multiple waiters are waiting on the same key and need to be woken up, the key is actually signaled

187

multiple times, which requires the object to keep a list of all the waiters so that it can perform a
“wake” operation on each of them (recall that waking a keyed event is the same as waking a
synchronization event). However, it’s possible for a thread to signal a keyed event without any
threads on the waiter list. In this scenario, the setting thread will actually perform a wait of its own!
Without this fallback, it would be possible for a setter thread to signal the keyed event during the
time that the user-mode code saw the keyed event as unsignaled and attempt a wait. The wait
might have come after the setting thread signaled the keyed event, resulting in a missed pulse, so
the waiting thread would deadlock. By forcing the setting thread to wait in this scenario, it will
only actually signal the keyed event when someone is looking (waiting).

Note When the keyed event wait code itself needs to perform a wait, it uses a built-in
semaphore located in the kernel-mode thread object (ETHREAD) called KeyedWaitSemaphore.
(This semaphore actually shares its location with the ALPC wait semaphore.) See Chapter 5 for

more information on thread objects.

Keyed events, however, do not replace standard event objects in the critical section
implementation. The initial reason, during the Windows XP timeframe, was that keyed events do
not offer scalable performance in heavy-usage scenarios. Recall that all the algorithms described
were only meant to be used in critical, low-memory scenarios, when performance and scalability
aren’t all that important. To replace the standard event object would place strain on eyed events
that they weren’t implemented to handle. The primary performance bottleneck was that keyed
events maintained the list of waiters described in a doubly linked list. This kind of list has poor
traversal speed, meaning the time required to loop through the list. In this case, this time depended
on the number of waiter threads. Because the object is global, it would be possible for dozens of
threads to be on the list, requiring long traversal times every single time a key was set or waited
on.

Note The head of the list is kept in the keyed event object, while the threads are actually
linked through the KeyedWaitChain field (which is actually shared with the thread’s exit time,
stored as a LARGE INTEGER, the same size as a doubly linked list) in the kernel-mode thread
object (ETHREAD). See Chapter 5 for more information on this object.

Windows improves keyed event performance by using a hash table instead of a linked list to
hold the waiter threads. This optimization allows Windows to include three new lightweight
user-mode synchronization primitives (to be discussed shortly) that all depend on the keyed event.
Critical sections, however, still continue to use event objects, primarily for application
compatibility and debugging, because the event object and internals are well-known and
documented, while keyed events are opaque and not exposed to the Win32 API.

Fast Mutexes and Guarded Mutexes

Fast mutexes, which are also known as executive mutexes, usually offer better performance
than mutex objects because, although they are built on dispatcher event objects, they perform a
wait through the dispatcher only if the fast mutex is contended, unlike a standard mutex, which
will always attempt the acquisition through the dispatcher. This gives the fast mutex especially
good performance in a multiprocessor environment. Fast mutexes are used widely in device
drivers.

188

However, fast mutexes are suitable only when normal kernel-mode APC (described earlier in
this chapter) delivery can be disabled. The executive defines two functions for acquiring them:
ExAcquireFastMutex and ExAcquireFastMutexUnsafe. The former function blocks all APC
delivery by raising the IRQL of the processor to APC level. The latter expects to be called with
normal kernel-mode APC delivery disabled, which can be done by raising the IRQL to APC level.
Another limitation of fast mutexes is that they can’t be acquired recursively, like mutex objects
can Guarded mutexes are essentially the same as fast mutexes (although they use a different
synchronization object, the KGATE, internally). They are acquired with the KeAcquireGuarded-

Mutex and KeAcquireGuardedMutexUnsafe functions, but instead of disabling APCs by raising
the IRQL to APC level, they disable all kernel-mode APC delivery by calling KeEnterGuarded-
Region. Recall that a guarded region, unlike a critical region, disables both special and normal
kernel-mode APCs, hence allowing the guarded mutex to avoid raising the IRQL.

Three implementation changes made the guarded mutex faster than a fast mutex:

m By avoiding raising the IRQL, the kernel can avoid talking to the local APIC of every
processor on the bus, which is a significant operation on heavy SMP systems. On uniprocessor
systems this isn’t a problem because of lazy IRQL evaluation, but lowering the IRQL may still

require accessing the PIC.

m The gate primitive is an optimized version of the event. By not having both
synchronization and notification versions, and by being the exclusive object that a thread can wait
on, the code for acquiring and releasing a gate is heavily optimized. Gates even have their own
dispatcher lock instead of acquiring the entire dispatcher database.

m In the noncontended case, acquisition and release of a guarded mutex works on a single bit,
with an atomic bit test-and-reset operation instead of the more complex integer operations fast

mutexes perform.

Note The code for a fast mutex is also optimized to account for almost all these
optimizations—it uses the same atomic lock operation, and the event object is actually a gate
object (although by dumping the type in the kernel debugger, you would still see an event object
structure; this is actually a compatibility lie). However, fast mutexes still raise the IRQL instead of
using guarded regions.

Because the flag responsible for special kernel APC delivery disabling (and the guarded
region functionality) was not added until Windows Server 2003, most drivers do not yet take
advantage of guarded mutexes. Doing so would raise compatibility issues with earlier versions of

Windows, which require a recompiled driver making use only of fast mutexes.

Internally, however, the Windows kernel has replaced almost all uses of fast mutexes with
guarded mutexes, as the two have identical semantics and can be easily interchanged. Another
problem related to the guarded mutex was the kernel function KeAreApcsDisabled. Prior to
Windows Server 2003, this function indicated whether normal APCs were disabled by checking if
the code was running inside a critical section. In Windows Server 2003, this function

was changed to indicate whether the code was in a critical, or guarded, region, changing the
functionality to also return TRUE if special kernel APCs are also disabled.

189

Because there are certain operations that drivers should not perform when special kernel
APCs are disabled, it makes sense to call KeGetCurrentlrql to check whether the IRQL is APC
level or not, which is the only way special kernel APCs could have been disabled. However,
because the memory manager makes use of guarded mutexes instead, this check fails because
guarded mutexes do not raise IRQL. Drivers should therefore call KeAreAllApcsDisabled for this
purpose. This function checks whether special kernel APCs are disabled and/or whether the IRQL
is APC level—the sure-fire way to detect both guarded mutexes and fast mutexes.

Executive Resources

Executive resources are a synchronization mechanism that supports shared and exclusive
access, and, like fast mutexes, they require that normal kernel-mode APC delivery be disabled
before they are acquired. They are also built on dispatcher objects that are only used when there is
contention. Executive resources are used throughout the system, especially in filesystem drivers.

Threads waiting to acquire a resource for shared access wait for a semaphore associated with
the resource, and threads waiting to acquire a resource for exclusive access wait for an event. A
semaphore with unlimited count is used for shared waiters because they can all be woken and
granted access to the resource when an exclusive holder releases the resource simply by signaling
the semaphore. When a thread waits for exclusive access of a resource that is currently owned, it
waits on a synchronization event object because only one of the waiters will wake when the event

is signaled.

Because of the flexibility that shared and exclusive access offers, there are a number of
functions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResourceExclusive-
Lite, ExAcquireSharedStarveExclusive, ExAcquireWaitForExclusive, and ExTryToAcquire-
ResourceExclusiveLite. These functions are documented in the WDK.

EXPERIMENT: Listing Acquired executive resources

The kernel debugger !locks command searches paged pool for executive resource objects and
dumps their state. By default, the command lists only executive resources that are currently owned,
but the —d option will list all executive resources. Here is partial output of the command:

1. Ikd> !'locks
2. **** DUMP OF ALL RESOURCE OBJECTS ****
3. KD: Scanning for held locks.
4. Resource @ 0x89929320 Exclusively owned
5. Contention Count = 3911396
6. Threads: 8952d030-01< *>
7. KD: Scanning for held locks. e
8. Resource @ 0x89dala68 Shared 1 owning threads
9. Threads: 8a4cb533-01< *> *** Actual Thread 8a4cb530
Note that the contention count, which is extracted from the resource structure, records the number

of times threads have tried to acquire the resource and had to wait because it was already owned.

You can examine the details of a specific resource object, including the thread that owns the
resource and any threads that are waiting for the resource, by specifying the—v switch and the
address of the resource:

190

1. Ikd> !locks -v 0x89929320

2. Resource @ 0x89929320 Exclusively owned

3. Contention Count = 3913573

4. Threads: 8952d030-01< *>

5. THREAD 8952d030 Cid Oacc.050c Teb: 7Fffdf000 Win32Thread: fe82c4cO
RUNNING on

6. processor 0O

7. Not impersonating

8. DeviceMap 9aaObdb8

9. Owning Process 89elead8 Image: windbg.exe

10. Wait Start TickCount 24620588 Ticks: 12 (0:00:00:00.187)

11. Context Switch Count 772193

12._UserTime 00:00:02.293

13. KernelTime 00:00:09.828

14.Win32 Start Address windbg (0x006e63b8)

15. Stack Init a7eba000 Current a7eb9cl0 Base a7ebal00 Limit a7eb7000 Call O

16. Priority 10 BasePriority 8 PriorityDecrement O loPriority 2
PagePriority 5

17. Unable to get context for thread running on processor 1, HRESULT
0x80004001

18. 1 total locks, 1 locks currently held

Pushlocks

Pushlocks are another optimized synchronization mechanism built on gate objects, and, like
guarded mutexes, they wait for a gate object only when there’s contention on the lock. They offer
advantages over the guarded mutex in that they can be acquired in shared or exclusive mode.
However, their main advantage is their size: a resource object is 56 bytes, but a pushlock is
pointer-size. Unfortunately, they are not documented in the WDK and are therefore reserved for
use by the operating system (although the APIs are exported, so internal drivers do use them).

There are two types of pushlocks: normal and cache-aware. Normal pushlocks require only
the size of a pointer in storage (4 bytes on 32-bit systems, and 8 bytes on 64-bit systems). When a
thread acquires a normal pushlock, the pushlock code marks the pushlock as owned if it is not
currently owned. If the pushlock is owned exclusively or the thread wants to acquire the thread
exclusively and the pushlock is owned on a shared basis, the thread allocates a wait block on the
thread’s stack, initializes a gate object in the wait block, and adds the wait block to the wait list
associated with the pushlock. When a thread releases a pushlock, the thread wakes a waiter, if any

are present, by signaling the event in the waiter’s wait block.

Because a pushlock is only pointer-sized, it actually contains a variety of bits to describe its
state. The meaning of those bits changes as the pushlock changes from being contended to
noncontended. In its initial state, the pushlock contains the following structure:

m | lock bit, set to 1 if the lock is acquired

m 1 waiting bit, set to 1 if the lock is contended and someone is waiting on it

191

m | waking bit, set to 1 if the lock is being granted to a thread and the waiter’s list needs to be

optimized

m 1 multiple shared bit, set to 1 if the pushlock is shared and currently acquired by more than

one thread
m 28 share count bits, containing the number of threads that have acquired the pushlock

As discussed previously, when a thread acquires a pushlock exclusively while the pushlock is
already acquired by either multiple readers or a writer, the kernel will allocate a pushlock wait
block. The structure of the pushlock value itself changes. The 28 share count bits now become the
pointer to the wait block. Because this wait block is allocated on the stack and the header files
contain a special alignment directive to force it to be 16-byte aligned, the bottom 4 bits of any
pushlock wait-block structure will be all zeros. Therefore, those bits are ignored for the purposes
of pointer dereferencing, and instead, the 4 bits shown earlier are combined with the pointer value.
Because this alignment removes the share count bits, the share count is now stored in the wait
block instead.

A cache-aware pushlock adds layers to the normal (basic) pushlock by allocating a pushlock
for each processor in the system and associating it with the cache-aware pushlock. When a thread
wants to acquire a cache-aware pushlock for shared access, it simply acquires the pushlock
allocated for its current processor in shared mode; to acquire a cache-aware pushlock exclusively,
the thread acquires the pushlock for each processor in exclusive mode.

Other than a much smaller memory footprint, one of the large advantages that pushlocks have
over executive resources is that in the noncontended case they do not require lengthy accounting
and integer operations to perform acquisition or release. By being as small as a pointer, the kernel
can use atomic CPU instructions to perform these tasks (lock cmpxchg is used, which atomically
compares and exchanges the old lock with a new lock). If the atomic compare and exchange fails,
the lock contains values the caller did not expect (callers usually expect the lock to be unused or
acquired as shared), and a call is then made to the more complex contended version. To push
performance even further, the kernel exposes the pushlock functionality as inline functions,
meaning that no function calls are ever generated during noncontended acquisition—the assembly
code is directly in each function. This increases code size slightly, but it avoids the slowness of a
function call. Finally, pushlocks use several algorithmic tricks to avoid lock convoys (a situation
that can occur when multiple threads of the same priority are all waiting on a lock and no actual
work gets done), and they are also self-optimizing: the list of threads waiting on a pushlock will be

periodically rearranged to provide fairer behavior when the pushlock is released.

Areas in which pushlocks are used include the object manager, where they protect global
object manager data structures and object security descriptors, and the memory manager, where
they protect Address Windowing Extension (AWE) data structures.

Deadlock Detection with Driver Verifier

A deadlock is a synchronization issue resulting from two threads or processors holding
resources that the other wants and neither yielding what it has. This situation might result in
system or process hangs. Driver Verifier, described in Chapter 7 and Chapter 9, has an option to

192

check for deadlocks involving spinlocks, fast mutexes, and mutexes. For information on when to
enable Driver Verifier to help resolve system hangs, see Chapter 14.

Critical Sections

Critical sections are one of the main synchronization primitives that Windows provides to
user-mode applications on top of the kernel-based synchronization primitives. Critical sections
and the other user-mode primitives we’ll see later have one major advantage over their kernel
counterparts, which is saving a round-trip to kernel mode in cases in which the lock is
noncontended (which is typically 99% of the time or more). Contended cases will still require
calling the kernel, however, because it is the only piece of the system that is able to perform the
complex waking and dispatching logic required to make these objects work.

Critical sections are able to remain in user mode by using a local bit to provide the main
exclusive locking logic, much like a spinlock. If the bit is 0, the critical section can be acquired,
and the owner sets the bit to 1. This operation doesn’t require calling the kernel but uses the
interlocked CPU operations discussed earlier. Releasing the critical section behaves similarly,
with bit state changing from 1 to 0 with an interlocked operation. On the other hand, as you can
probably guess, when the bit is already 1 and another caller attempts to acquire the critical section,

the kernel must be called to put the thread in a wait state.

Critical sections also provide more fine-grained locking mechanisms than kernel primitives.
A critical section can be acquired for shared or for exclusive mode, allowing it to function as a
multiple-reader (shared), single-writer (exclusive) lock for data structures such as databases.
When a critical section is acquired in shared mode and other threads attempt to acquire the same
critical section, no trip to the kernel is required because none of the threads will be waiting. Only
when a thread attempts to acquire the critical section for exclusive access, or the critical section is

already locked by an exclusive owner, will this be required.

To make use of the same dispatching and synchronization mechanism we’ve seen in the
kernel, critical sections actually make use of existing kernel primitives. A critical section data
structure actually contains a kernel mutex as well as a kernel semaphore object. When the critical
section is acquired exclusively by more than one thread, the mutex is used because it permits only
one owner. When the critical section is acquired in shared mode by more than one thread, a
semaphore is used because it allows multiple owner counts. This level of detail is typically hidden
from the programmer, and these internal objects should never be used directly.

Finally, because critical sections are actually not full-blown kernel objects, they do have
certain limitations. The primary one is that you cannot obtain a kernel handle to a critical section,
and as such, no security, naming, or other object manager functionality can be applied to a critical
section. Two processes cannot use the same critical section to coordinate their operations, nor can
duplication or inheritance be used.

Condition Variables

Condition variables provide a Windows native implementation for synchronizing a set of
threads that are waiting on a specific result to a conditional test. While this operation was possible
with other user-mode synchronization methods, there was no atomic mechanism to check the

193

result of the conditional test and to begin waiting on a change in the result. This required that

additional synchronization be used around such pieces of code.

A user-mode thread initializes a condition variable by calling InitializeConditionVariable to
set up the initial state. When it wants to initiate a wait on the variable, it can call
SleepConditionVariableCS, which uses a critical section (that the thread must have initialized) to
wait for changes to the variable. The setting thread must use WakeConditionVariable (or
WakeAllConditionVariable) after it has modified the variable (there is no automatic detection
mechanism). This call will release the critical section of either one or all waiting threads,

depending on which function was used.

Before condition variables, it was common to use either a notification event or a
synchronization event (recall that these are referred to as auto-reset or manual-reset in the
Windows API) to signal the change to a variable such as the state of a worker queue. Waiting for a
change required a critical section to be acquired and then released, followed by a wait on an event.
After the wait, the critical section would have to be re-acquired. During this series of acquisitions
and releases, the thread may have switched contexts, causing problems if one of the threads called
PulseEvent (a similar problem to the one that keyed events solve by forcing a wait for the setting
thread if there is no waiter). With condition variables, acquisition of the critical section can be
maintained by the application while SleepConditionVariableCS is called and be released only after
the actual work is done. This makes writing work-queue code (and similar implementations) much

simpler and predictable.

Internally, conditional variables can be thought of as a port of the existing pushlock
algorithms present in kernel mode, with the additional complexity of acquiring and releasing
critical sections in the SleepConditionVariableCS API. Conditional variables are pointer-size (just
like pushlocks), avoid using the dispatcher (which requires a ring transition to kernel mode in this
scenario, making the advantage even more noticeable), automatically optimize the wait list during
wait operations, and protect against lock convoys. Additionally, condition variables make full use
of keyed events instead of the regular event object that developers would have used on their own,

which makes even contended cases more optimized.

Slim Reader Writer Locks

Although condition variables are a synchronization mechanism, they are not fully primitive
locking objects. As we’ve seen, they still depend on the critical section lock, whose acquisition
and release uses standard dispatcher event objects, so trips through kernel mode can still happen
and callers still require the initialization of the large critical section object. If condition variables
share a lot of similarities with pushlocks, slim reader writer (SRW) locks are nearly identical.
They are also pointer-size, use atomic operations for acquisition and release, rearrange their waiter
lists, protect against lock convoys, and can be acquired both in shared and exclusive mode. Some
differences from pushlocks, however, include the fact that SRW locks cannot be “upgraded” or
converted from shared to exclusive or vice versa. Additionally, they cannot be recursively
acquired. Finally, SRW locks are exclusive to user-mode code, while pushlocks are exclusive to
kernel-mode code, and the two cannot be shared or exposed from one layer to the other.

194

Not only can SRW locks entirely replace critical sections in application code, but they also
offer multiple-reader, single-writer functionality. SRW locks must first be initialized with
InitializeSRWLock, after which they can be acquired or released in either exclusive or shared
mode with the appropriate APIs: AcquireSRWLockExclusive, ReleaseSRWLockExclusive,
AcquireSRWLockShared, and ReleaseSRWLockShared.

Note Unlike most other Windows APIs, the SRW locking functions do not return with a
value—instead they generate exceptions if the lock could not be acquired. This makes it obvious
that an acquisition has failed so that code that assumes success will terminate instead of

potentially proceeding to corrupt user data.

The Windows SRW locks do not prefer readers or writers, meaning that the performance for
either case should be the same. This makes them great replacements for critical sections, which
are writer-only or exclusive synchronization mechanisms. If SRW locks were optimized for
readers, they would be poor exclusive-only locks, but this isn’t the case. As a result, the design of
the condition variable mechanism introduced earlier also allows for the use of SRW locks instead
of critical sections, through the SleepConditionVariableSRW API. Finally, SRW locks also use
keyed events instead of standard event objects, so the combination of condition variables and
SRW locks results in scalable, pointer-size synchronization mechanisms with very few trips to
kernel mode—except in contended cases, which are optimized to take less time and memory to
wake and set because of the use of keyed events.

Run Once Initialization

The ability to guarantee the atomic execution of a piece of code responsible for performing
some sort of initialization task—such as allocating memory, initializing certain variables, or even
creating objects on demand—is a typical problem in multithreaded programming. In a piece of
code that can be called simultaneously by multiple threads (a good example is the DlIMain routine,
which initializes DLLs) there are several ways of attempting to ensure the correct, atomic, and

unique execution of initialization tasks.

In this scenario, Windows implements init once, or one-time initialization (also called run
once initialization internally). This mechanism allows for both synchronous (meaning that the
other threads must wait for initialization to complete) execution of a certain piece of code, as well
as asynchronous (meaning that the other threads can attempt to do their own initialization and race)
execution. We’ll look at the logic behind asynchronous execution later after explaining the

synchronous mechanism.

In the synchronous case, the developer writes the piece of code that would normally have
executed after double-checking the global variable in a dedicated function. Any information that
this routine needs can be passed through the parameter variable that the init-once routine accepts.
Any output information is returned through the context variable (the status of the initialization
itself is returned as a Boolean). All the developer has to do to ensure proper execution is call
InitOnceExecuteOnce with the parameter, context, and run-once function pointer after initializing
an InitOnce object with InitOncelnitialize API. The system will take care of the rest.

For applications that want to use the asynchronous model instead, the threads call

InitOnceBeginlnitialize and receive a pending status and the context described earlier. If the

195

pending status is FALSE, initialization has already taken place, and the thread uses the context
value for the result. (It’s also possible for the function itself to return FALSE, meaning that
initialization failed.) However, if the pending status comes back as TRUE, the thread should now
race to be the first to create the object. The code that will follow will perform whatever
initialization tasks are required, such as creating some sort of object or allocating memory. When
this work is done, the thread calls InitOnceComplete with the result of the work as the context and
receives a status. If the status is TRUE, the thread won the race, and the object it created or
allocated should be the global object. The thread can now save this object or return it to a caller,
depending on the usage.

In a more complex scenario when the status is FALSE, this means that the thread lost the race.
The thread must now undo all the work it did, such as deleting the object or freeing the memory,
and then call InitOnceBeginlnitialize again. However, instead of requesting to start a race as it did
initially, it uses the INIT ONCE CHECK ONLY flag, knowing that it has lost, and requests the
winner’s context instead (for example, the object or memory that had to be created or allocated).
This returns another status, which can be TRUE, meaning that the context is valid and should be
used or returned to the caller, or FALSE, meaning that initialization failed and nobody has
actually been able to perform the work (such as in the case of a lowmemory condition, perhaps).

In both cases, the mechanism for run once initialization is similar to the mechanism for
condition variables and slim reader writer locks. The init once structure is pointer-size, and inline
assembly versions of the SRW acquisition/release code are used for the noncontended case, while
keyed events are used when contention has occurred (which happens when the mechanism is used
in synchronous mode) and the other threads must wait for initialization. In the asynchronous case,
the locks are used in shared mode, so multiple threads can perform initialization at the same time.

3.4 System Worker Threads

During system initialization, Windows creates several threads in the System process, called
system worker threads, which exist solely to perform work on behalf of other threads. In many
cases, threads executing at DPC/dispatch level need to execute functions that can be performed
only at a lower IRQL. For example, a DPC routine, which executes in an arbitrary thread context
(because DPC execution can usurp any thread in the system) at DPC/dispatch level IRQL, might
need to access paged pool or wait for a dispatcher object used to synchronize execution with an
application thread. Because a DPC routine can’t lower the IRQL, it must pass such processing to a
thread that executes at an IRQL below DPC/dispatch level.

Some device drivers and executive components create their own threads dedicated to
processing work at passive level; however, most use system worker threads instead, which avoids
the unnecessary scheduling and memory overhead associated with having additional threads in the
system. An executive component requests a system worker thread’s services by calling the
executive functions ExQueueWorkItem or loQueueWorkItem. Device drivers should only use the
latter (because this associates the work item with a Device object, allowing for greater
accountability and the handling of scenarios in which a driver unloads while its work item is
active). These functions place a work item on a queue dispatcher object where the threads look for

196

work. (Queue dispatcher objects are described in more detail in the section “I/O Completion
Ports” in Chapter 7.)

The IoQueueWorkltemEx, IoSizeofWorkltem, IolnitializeWorkItem, and IoUninitialize-
WorkItem APIs act similarly, but they create an association with a driver’s Driver object or one of
its Device objects.

Work items include a pointer to a routine and a parameter that the thread passes to the routine
when it processes the work item. The device driver or executive component that requires
passive-level execution implements the routine. For example, a DPC routine that must wait for a
dispatcher object can initialize a work item that points to the routine in the driver that waits for the
dispatcher object, and perhaps points to a pointer to the object. At some stage, a system worker
thread will remove the work item from its queue and execute the driver’s routine. When the
driver’s routine finishes, the system worker thread checks to see whether there are more work
items to process. If there aren’t any more, the system worker thread blocks until a work item is
placed on the queue. The DPC routine might or might not have finished executing when the
system worker thread processes its work item.

There are three types of system worker threads:

m Delayed worker threads execute at priority 12, process work items that aren’t considered
time-critical, and can have their stack paged out to a paging file while they wait for work items.
The object manager uses a delayed work item to perform deferred object deletion, which deletes
kernel objects after they have been scheduled for freeing.

m Critical worker threads execute at priority 13, process time-critical work items, and on
Windows Server systems have their stacks present in physical memory at all times.

m A single hypercritical worker thread executes at priority 15 and also keeps its stack in
memory. The process manager uses the hypercritical work item to execute the thread “reaper”
function that frees terminated threads.

The number of delayed and critical worker threads created by the executive’s
ExpWorker-Initialization function, which is called early in the boot process, depends on the
amount of memory present on the system and whether the system is a server. Table 3-18 shows
the initial number of threads created on default configurations. You can specify that
ExplnitializeWorker create up to 16 additional delayed and 16 additional critical worker threads
with the AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads values under
the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Executive.

TABLE 3-18 Initial Number of System Worker Threads

Work Queue Type Default Number of Threads
Delayed T
Critical B
Hypercritical 1

197

The executive tries to match the number of critical worker threads with changing workloads
as the system executes. Once every second, the executive function ExpWorkerThreadBalance-
Manager determines whether it should create a new critical worker thread. The critical worker
threads that are created by ExpWorkerThreadBalanceManager are called dynamic worker threads,
and all the following conditions must be satisfied before such a thread is created:

m Work items exist in the critical work queue.

m The number of inactive critical worker threads (ones that are either blocked waiting for
work items or that have blocked on dispatcher objects while executing a work routine) must be
less than the number of processors on the system.

m There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the workload dictates,
the executive can create up to 16 dynamic worker threads.

EXPERIMENT: Listing System Worker Threads

You can use the !exqueue kernel debugger command to see a listing of system worker
threads classified by their type:

1. 1kd> lexqueue

2. Dumping ExWorkerQueue: 820FDE40

3. **** Critical WorkQueue(current = 0 maximum = 2)

4_. THREAD 861160b8 Cid 0004.001c Teb: 00000000 Win32Thread: 00000000 WAIT
5. THREAD 8613b020 Cid 0004.0020 Teb: 00000000 Win32Thread: 00000000 WAIT
6. THREAD 8613bd78 Cid 0004.0024 Teb: 00000000 Win32Thread: 00000000 WAIT
7. THREAD 8613bad0 Cid 0004.0028 Teb: 00000000 Win32Thread: 00000000 WAIT
8. THREAD 8613b828 Cid 0004.002c Teb: 00000000 Win32Thread: 00000000 WAIT
9. **** Delayed WorkQueue(current = 0 maximum = 2)

10. THREAD 8613b580 Cid 0004.0030 Teb: 00000000 Win32Thread: 00000000 WAIT
11. THREAD 8613b2d8 Cid 0004.0034 Teb: 00000000 Win32Thread: 00000000 WAIT
12. THREAD 8613c020 Cid 0004.0038 Teb: 00000000 Win32Thread: 00000000 WAIT
13. THREAD 8613cd78 Cid 0004.003c Teb: 00000000 Win32Thread: 00000000 WAIT
14. THREAD 8613cadO Cid 0004.0040 Teb: 00000000 Win32Thread: 00000000 WAIT
15. THREAD 8613c828 Cid 0004.0044 Teb: 00000000 Win32Thread: 00000000 WAIT
16. THREAD 8613c580 Cid 0004.0048 Teb: 00000000 Win32Thread: 00000000 WAIT
17. **** HyperCritical WorkQueue(current = 0 maximum = 2)

18. THREAD 8613c2d8 Cid 0004.004c Teb: 00000000 Win32Thread: 00000000 WAIT

3.5 Windows global Flags

Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that
enable various internal debugging, tracing, and validation support in the operating system. The
system variable NtGlobalFlag is initialized from the registry key HKLM\SYSTEM
\CurrentControlSet\Control\Session Manager in the value GlobalFlag at system boot time. By

198

default, this registry value is 0, so it’s likely that on your systems, you’re not using any global
flags. In addition, each image has a set of global flags that also turn on internal tracing and
validation code (although the bit layout of these flags is entirely different from the systemwide
global flags).

Fortunately, the Windows SDK and the debugging tools contain a utility named Gflags.exe
that allows you to view and change the system global flags (either in the registry or in the running
system) as well as image global flags. Gflags has both a command-line and a GUI interface. To
see the command-line flags, type gflags /?. If you run the utility without any switches, the dialog
box shown in Figure 3-25 is displayed.

[RIobe Fieg:

System Registry] kermel Flags | Image File i

ri

[T Show loader snaps
[T Debug intial command

[~ Enahle heap tail checking

[~ Enakle heap free checking

[~ Erahle heap parameter checking
[T Enahle heap validation on call

[T Enable application verifier

7 Enable

Fre] Farninr
f= L) L= R g

LRGIng

[~ Enakle heap tagoing

[T Create user mode stack trace database
[T Create kernel mode stack trace databasze
[~ Msintain 2 list of ohjects for each type
[T Enahble heap tagging by DLL
—HKernel Special Pool Tag -
| % Hex
 Text i
{7 Nerify Start £+ Yerify End

[T Enakle debugeing of Wins2 subsystem

[~ Enable loading of kernel debugger symbolz
[~ Dizable paging of kernel stacks

[~ Enahle system critical bresks

[T Dizshle heap coalesce on free

[T Enakle close exception

[~ Enahle exception logging

[~ Enable ohject handle type tagging
[T Enahkle page heap

[T Db WiRL OGN

[T Buffer DhoPrirt output

[~ Early critical section event creation
[T Load DLL= top-dowen (YNG4 anly)
[T Enahle had handles detection

[T Disable protected DLL verification

—Zhject Reference Tracing — al

[T Enakle [Perime
Pool Tags1

Process]

Sy

o

FIGURE 3-25 Setting system debugging options with Gflags

Cancel]

You can configure a variable’s settings in the registry on the System Registry page or the
current value of a variable in system memory on the Kernel Flags page. You must click the Apply
button to make the changes. (You’ll exit if you click the OK button.)

The Image File page requires you to fill in the file name of an executable image. Use this
option to change a set of global flags that apply to an individual image (rather than to the whole

199

system). In Figure 3-26, notice that the flags are different from the operating system ones shown
in Figure 3-25.

=

' Glabal Flags =

Syztem Hegistr_l.li kemel Flags Image File I

Image: (TABtD refresh) | cotestitest exe Launch l
[T Stop on exception [T Disahble stack extension
[T Show loader shaps

v Enahle heap tail checking [Enshle system critical breaks
[¥ Enable heap free checking [T Dizable hesp coalesce on free
[T Enakle heap parameter checking

[T Enakle heap validation on call

¥ Enaskle spplication verifier:

[~ Enable page hesp

[T Enakle heap tagging
[T Creste user mode stack trace database [T Early critical section evert creation

[~ Enable heap tagging by DLL [T Dizable protecied DLL verification
[T lgnore szserts

[T Load imege using large paces if possible

[T Debugger:

[T Stack Bechktrace: (Megs)

k.] Cancel Apply

FIGURE 3-26 Setting image global flags with Gflags

EXPERIMENT: Viewing and Setting NtGlobalFlag

You can use the !gflag kernel debugger command to view and set the state of the
NtGlobalFlag kernel variable. The !gflag command lists all the flags that are enabled. You can
use !gflag -? to get the entire list of supported global flags.

1. 1kd> Igflag

2. Current NtGlobalFlag contents: 0x00004400

3. ptg - Enable pool tagging

4. otl - Maintain a list of objects for each type

200

3.6 Advanced Local Procedure Calls (ALPCs)

An advanced local procedure call (ALPC) is an interprocess communication facility for
highspeed message passing. It is not directly available through the Windows API; it is an internal
mechanism available only to Windows operating system components. Here are some examples of
where ALPCs are used:

m Windows applications that use remote procedure calls (RPCs), a documented API,
indirectly use ALPCs when they specify local-RPC, a form of RPC used to communicate between
processes on the same system.

m A few Windows APIs result in sending messages to the Windows subsystem process.

m Winlogon uses ALPCs to communicate with the local security authentication server
process, LSASS.

m The security reference monitor (an executive component explained in Chapter 6) uses
ALPCs to communicate with the LSASS process.

Note Before ALPCs were introduced in Windows Vista, the kernel supported an IPC
mechanism called simply LPC (local procedure call). LPC’s scalability limitations and inherent
deadlock scenarios made them a poor choice for the implementation of the User-Mode Driver
Framework (UMDF), which requires high-speed, scalable communication with UMDF
components in the executive to perform hardware operations. Supporting UMDF was one of the
many reasons the ALPC mechanism was written to supplant LPC. (For more information on
UMDF, see Chapter 7.)

EXPERIMENT: Viewing ALPC Port Objects

You can see named ALPC port objects with the WinObj tool from Sysinternals. Run
Winobj.exe and select the root directory. A gear icon identifies the port objects, as shown here:

201

f @_‘ WAnOhj - Sysinternals: wannw, sesinternals, com
File %iew Help
&
=8N Marme Type SymLink -
~(3 Archlame _ (D CsribSyncEvent Event
-0 BaseNamedObjects i Dfs SymbolicLink \Device\Dfst
Ejg E::_T:k (DDS‘\"‘SDEG.Dehug.Trace.Mer‘nar}f.E?E Ewent
e e @EFﬂnitEvent Event
. FileSystem (DerssmblnitEvent Event
(] GLOBAL?? @EFSSNInitEvent Bwent
0 KemelObjects g}LanmanSewerﬂ.nnnunceEvent Ewent
[l KnownDlls igh LsaluthenticationPart ALPC Port |
{23 NLS grLsaPerfarmance Zection
{2 ObjectTypes ik MrncssépiPort ALPC Port
-{_7] RPC Contral 08 Nt Device
-] Security igh ProcessMonitorPort FilterCanre... 1
& Sessions it REGISTRY Key 1
{:| UMDFCommunicationPorts || (1) sam_SERVICE_STARTED Ewvent
- Windos igh SelsaCommandPort ALPC Port
igh SeRmCommandPort ALPC Port
ligh SmipiPort ALPC Part i
ﬁﬁSisWinStatinnApiF‘nrt ALPC Part
aﬂSg,fstemRDut Symboaliclink \DevicetHar
igh ThemedpiPort ALPC Part -
4| 1] [F

To see the ALPC port objects used by RPC, select the \RPC Control directory, as shown

here:

202

it

! @_‘ WiinOhj - Sysinternals: wanansysinternals.corm E\
Eile MWiew Help
(] g
SR R Matme Type Symlink *
- Archlame) ighactkemel ALPC Port
- BaseNamedObjects g4 AudiaClientRpc ALPC Port
rJE E:ﬂiﬁk igh fudioDeviceGraph ALPC Port L
3 Driver 'ﬁﬁﬂudinsw ALPC Port
.0 FileSyster i audit ALPC Port
(3 GLOBAL?Y igh dhcpesve ALPC Port 8
{20 KemelObjects ﬁﬁdhcpcsvcﬁ ALPC Port
B8 KnownDlls G DECI0C Zection
0 LS s DECIAE Section
] ObjectTypes G DSECI6e Section
-+ RPC Caontral G DSEC2Te Section
-0 Security G DEEC280 Section
-0 Sessions G DECIcE Section
20 UMDFCommunicationPorts G DSEC2ed Sectian
-3 Windows GRDSECIe Section
G DEECI44 Secliun
G DSEC3T0 Section
G DEEC3el Section
G DIECIed Section
G DEECALD Section
G DSECAcH Section -
1| 1T} | ;
SRPC ContralhDSECZ0C

Typically, ALPCs are used between a server process and one or more client processes of that
server. An ALPC connection can be established between two user-mode processes or between a
kernel-mode component and a user-mode process. For example, as noted in Chapter 2, Windows
processes send occasional messages to the Windows subsystem by using ALPCs. Also, some
system processes use ALPCs to communicate, such as Winlogon and Lsass.

An example of a kernel-mode component using an ALPC to talk to a user process is the

communication between the security reference monitor and the Lsass process.
ALPCs support the following three methods of exchanging messages:

m A message that is shorter than 256 bytes can be s